給定函數(shù)①y=x
1
2
,②y=log
1
2
(x+1)
,③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是( 。
A、①②B、②③C、③④D、①④
分析:本題所給的四個(gè)函數(shù)分別是冪函數(shù)型,對(duì)數(shù)函數(shù)型,指數(shù)函數(shù)型,含絕對(duì)值函數(shù)型,在解答時(shí)需要熟悉這些函數(shù)類(lèi)型的圖象和性質(zhì);①y=x
1
2
為增函數(shù),②y=log
1
2
(x+1)
為定義域上的減函數(shù),③y=|x-1|有兩個(gè)單調(diào)區(qū)間,一增區(qū)間一個(gè)減區(qū)間,④y=2x+1為增函數(shù).
解答:解:①是冪函數(shù),其在(0,+∞)上即第一象限內(nèi)為增函數(shù),故此項(xiàng)不符合要求;
②中的函數(shù)是由函數(shù)y=log
1
2
x
向左平移1個(gè)單位長(zhǎng)度得到的,因?yàn)樵瘮?shù)在(0,+∞)內(nèi)為減函數(shù),故此項(xiàng)符合要求;
③中的函數(shù)圖象是由函數(shù)y=x-1的圖象保留x軸上方,下方圖象翻折到x軸上方而得到的,故由其圖象可知該項(xiàng)符合要求;
④中的函數(shù)圖象為指數(shù)函數(shù),因其底數(shù)大于1,故其在R上單調(diào)遞增,不合題意.
故選B.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,要注意每類(lèi)函數(shù)中決定單調(diào)性的元素所滿(mǎn)足的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定函數(shù)①y=x
1
2
,②y=log
1
2
(x+1)
,③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定函數(shù)①y=x
1
2
②y=x-1y=log
1
4
x
④y=-x2+2x,其中在(0,+∞)上單調(diào)遞減的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定函數(shù)①y=x
1
2
;②y=log
1
2
(x+1);③y=2x-1;④y=x+
1
x
;其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定函數(shù)①y=x
1
2
,②y=log
1
2
(x+1)
,③y=|x2-2x|,④y=x+
1
x
,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案