已知函數(shù)f(x)=(ax2bxc)exf(0)=1,f(1)=0.
(1)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),是否存在實(shí)數(shù)m使不等式2f(x)+4xexmx+1≥-x2+4x+1對(duì)任意x∈R恒成立?若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由.
(1)[0,1](2)存在m=4,
f(0)=1,∴f(0)=c·e0c=1,
f(1)=(ab+1)·e1=0,∴ab+1=0,
b=-1-a,∴f(x)=[ax2-(1+a)x+1]·ex.
f′(x)=[ax2+(a-1)xa]ex.
(1)∵函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞減,∴對(duì)任意x∈[0,1],有f′(x)≤0,即對(duì)任意x∈[0,1],有ax2+(a-1)xa≤0,令g(x)=ax2+(a-1)xa.當(dāng)a>0時(shí),因?yàn)槎魏瘮?shù)g(x)=ax2+(a-1)xa的圖象開(kāi)口向上,而g(0)=-a<0,所以需g(1)=a-1≤0,即0<a≤1,當(dāng)a=0時(shí),對(duì)任意x∈[0,1],g(x)=-x≤0成立,符合條件,當(dāng)a<0時(shí),因?yàn)?i>g(0)=-a>0,不符合條件.
a的取值范圍是[0,1].
(2)當(dāng)a=0時(shí),f(x)=(1-x)ex,假設(shè)存在實(shí)數(shù)m,使不等式2f(x)+4xexmx+1≥-x2+4x+1對(duì)任意x∈R恒成立.
mx+1≥-x2+4x+1,得x2+(m-4)x≥0對(duì)x∈R恒成立.
Δ=(m-4)2≤0,∴m=4.
下面證明:當(dāng)m=4時(shí),2f(x)+4xexmx+1對(duì)x∈R恒成立.
即(2x+2)ex-4x-1≥0,對(duì)x∈R恒成立.
g(x)=(2x+2)ex-4x-1,g′(x)=(2x+4)ex-4
g′(0)=0.
當(dāng)x>0時(shí),(2x+4)>4,ex>1,∴(2x+4)ex>4,g′(x)>0,∴g(x)在(0,+∞)上單調(diào)遞增.
當(dāng)x<0時(shí),(2x+4)<4,0<ex<1,
∴(2x+4)ex<4ex<4,g′(x)<0,
g(x)在(-∞,0)上單調(diào)遞減.
g(x)ming(0)=2-1=1>0,
g(x)>0,即(2x+2)ex>4x+1對(duì)x∈R恒成立,
∴存在m=4,使2f(x)+4xexmx+1≥-x2+4x+1對(duì)任意x∈R恒成立
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3ax2+bx.
(1)若a=2b,試問(wèn)函數(shù)f(x)能否在x=-1處取到極值?若有可能,求出實(shí)數(shù)a,b的值;否則說(shuō)明理由.
(2)若函數(shù)f(x)在區(qū)間(-1,2),(2,3)內(nèi)各有一個(gè)極值點(diǎn),試求w=a-4b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),為常數(shù)),直線與函數(shù)、的圖象都相切,且與函數(shù)圖象的切點(diǎn)的橫坐標(biāo)為
(1)求直線的方程及的值;
(2)若 [注:的導(dǎo)函數(shù)],求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),試討論方程的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù), 在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù), 若對(duì)于任意,總存在, 使得, 求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為常數(shù)),其圖象是曲線
(1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得同時(shí)成立,求實(shí)數(shù)的取值范圍;
(3)已知點(diǎn)為曲線上的動(dòng)點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線,設(shè)切線的斜率分別為.問(wèn):是否存在常數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知曲線y=(a-3)x3+ln x存在垂直于y軸的切線,函數(shù)f(x)=x3-ax2-3x+1在[1,2]上單調(diào)遞增,則a的取值范圍為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義在R上的函數(shù)滿足:恒成立,若,則的大小關(guān)系為 ( )
A.B.
C.D.的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=,x∈(1,+∞).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在區(qū)間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案