等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a3,a5分別為等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),試求數(shù)列{bn}的通項(xiàng)公式.

解:(1)設(shè){an}的公比為q
由已知得16=2q3,解得q=2
an=2×2n-1=2n
(2)由(1)得a3=8,a5=32,則b3=8,b5=32
設(shè){bn}的公差為d,則有,解得
∴bn=-16+12(n-1)=12n-28
分析:(1)利用等比數(shù)列的通項(xiàng)公式求出等比數(shù)列的公比,再利用通項(xiàng)公式求出數(shù)列的通項(xiàng);
(2)首先由(1)得出a3,a5進(jìn)而得出b3=8,b5=32,然后利用等差數(shù)列的通項(xiàng)公式列方程組,求出首項(xiàng)和公差,即可得出答案.
點(diǎn)評:解決等差數(shù)列、等比數(shù)列的問題,一般利用的是通項(xiàng)公式及前n項(xiàng)和公式列方程組,求出基本量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項(xiàng)所組成的新數(shù)列的前n項(xiàng)和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于( 。

查看答案和解析>>

同步練習(xí)冊答案