證明若c>0,則對(duì)于所有實(shí)數(shù)a,b都有|a+b|2≤(1+c)|a|2+(1+)|b|2,當(dāng)且僅當(dāng)b=ac時(shí)等號(hào)成立.

證明:由c>0,得2|a|·|b|=≤c|a|2+c-1|b|2,

又|a+b|2≤(|a|+|b|)2=|a|2+|b|2+2|a|·|b|≤(1+c)|a|2+(1+c-1)|b|2,

即|a+b|2≤(1+c)|a|2+(1+)|b|2,當(dāng)且僅當(dāng)b=ac時(shí)等號(hào)成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

28、(1)一次函數(shù)f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,則對(duì)于任意x∈(m,n)都有f(x)>0,試證明之;
(2)試用上面結(jié)論證明下面的命題:若a,b,c∈R且|a|<1,|b|<1,|c|<1,則ab+bc+ca>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)證明下列命題:
已知函數(shù)f(x)=kx+p及實(shí)數(shù)m,n(m<n),若f(m)>0,f(n)>0,則對(duì)于一切實(shí)數(shù)x∈(m,n)都有f(x)>0.
(2)利用(1)的結(jié)論解決下列各問(wèn)題:
①若對(duì)于-6≤x≤4,不等式2x+20>k2x+16k恒成立,求實(shí)數(shù)k的取值范圍.
②a,b,c∈R,且|a|<1,|b|<1,|c|<1,求證:ab+bc+ca>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

證明:若c>0,則對(duì)于所有實(shí)數(shù)ab都有|a+b|2≤(1+c)|a|2+(1+)|b|2,當(dāng)且僅當(dāng)b=ac時(shí)等號(hào)成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

證明:若c>0,則對(duì)于所有實(shí)數(shù)a,b都有|a+b|2≤(1+c)|a|2+(1+)|b|2,當(dāng)且僅當(dāng)b=ac時(shí)等號(hào)成立。

查看答案和解析>>

同步練習(xí)冊(cè)答案