如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.
(1)詳見解析,(2).
【解析】
試題分析:(1)證明線線垂直,一般利用線面垂直性質(zhì)與判定定理進行轉(zhuǎn)化. 因為四邊形ABCD是菱形,所以AC⊥BD.又因為PD⊥平面ABCD,所以PD⊥AC.因而AC⊥平面PDB,從而AC⊥DE.(2)設(shè)AC與BD相交于點F.連EF.由(1),知AC⊥平面PDB,所以AC⊥EF.所以S△ACE=AC·EF,因此△ACE面積最小時,EF最小,則EF⊥PB.由△PDB∽△FEB,解得PD=,因為PD⊥平面ABCD,所以VP—ABCD=S□ABCD·PD=×24×=.
(1)證明:連接BD,設(shè)AC與BD相交于點F.
因為四邊形ABCD是菱形,所以AC⊥BD.
又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點,DE平面PBD,所以AC⊥DE.
(2)連EF.由(1),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF. S△ACE=AC·EF,在△ACE面積最小時,EF最小,則EF⊥PB.
S△ACE=3,×6×EF=3,解得EF=1.
由△PDB∽△FEB,得.由于EF=1,F(xiàn)B=4,,
所以PB=4PD,即.解得PD=
VP—ABCD=S□ABCD·PD=×24×=.
考點:線面垂直性質(zhì)與判定定理,四棱錐體積
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二理科數(shù)學(xué)試卷(解析版) 題型:填空題
某商場有四類食品,其中糧食類、植物油類、動物性食品類及果蔬類分別有40種、10種、30種、20 種,從中抽取一個容量為20的樣本進行食品安全檢測。若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測三數(shù)學(xué)試卷(解析版) 題型:填空題
復(fù)數(shù)(是虛數(shù)單位)的虛部為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知,是空間中兩條不同的直線,,,是空間中三個不同的平面,則下列命題正確的序號是 .
①若,,則; ②若,,則;
③若,,則; ④若,,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知復(fù)數(shù),則z的虛部為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練文科數(shù)學(xué)試卷(解析版) 題型:填空題
若為正實數(shù),則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練文科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖是一個算法的偽代碼,輸出結(jié)果是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省徐州市高三第三次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時,,則不等式的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高考模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知橢圓的中心在坐標(biāo)原點O, A,C分別是橢圓的上下頂點,B是橢圓的左頂點,F(xiàn)是橢圓的左焦點,直線AF與BC相交于點D。若橢圓的離心率為,則∠BDF的正切值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com