【答案】
分析:(1)
.變形出
的表達式,求值即可.
(2)由面積公式表示出△ABC的面積,根據(jù)其形式用基本不等式求出等號成立的條件,即可.
解答:解:(1)
.得,
-2
•
=4,
故
=2
•
+4,又
•
═2
所以
=8
(2)由面積公式S
△ABC=
|AB||AC|sin∠BAC
又
•
=|AB||AC|cos∠BAC=2
∴cos∠BAC=
∴sin∠BAC═
=
∴S
△ABC=
|AB||AC|sin∠BAC=
≤
等號當且僅當|AB|=|AC|時成立,
又由(1)|AB|=|AC|=2時,三角形面積取到最大值.
cos∠BAC=
,即∠BAC=60°
答:當△ABC的面積最大時,求∠A的大小是60
.
點評:考查向量的夾角公式、三角形中同角三角函數(shù)的基本關系以及基本不等式求最值,綜合性與知識性較強.