【題目】已知命題:“雙曲線任意一點(diǎn)到直線的距離分別記作,則為定值”為真命題.

1)求出的值.

2)已知直線 關(guān)于y軸對(duì)稱且使得上的任意點(diǎn)到的距離滿足為定值,求的方程.

3)已知直線是與(2)中某一條直線平行(或重合)且與橢圓交于兩點(diǎn),求的最大值.

【答案】1;(2或者;(3.

【解析】

1)設(shè),利用點(diǎn)在雙曲線上和點(diǎn)到直線的距離公式可求為定值且定值為.

2)設(shè),設(shè)為橢圓任意點(diǎn),利用點(diǎn)到直線的距離公式可求,取,可計(jì)算出的值,再驗(yàn)證對(duì)任意的都成立,從而可求直線的方程.

3)設(shè)直線,,聯(lián)立直線方程和橢圓方程,可證,對(duì)該式兩邊平方后再利用點(diǎn)在橢圓上化簡可得,從而,根據(jù)后兩個(gè)結(jié)論可證,利用基本不等式可求的最大值.

1)設(shè),則

到直線距離分別為:

,所以,

為定值且定值為.

2)設(shè),設(shè)為橢圓任意點(diǎn),

的距離分別為:

所以

,,因?yàn)?/span>為定值,

,

所以 ,

又當(dāng)時(shí),對(duì)橢圓上任意的,

總有,該值為定值.

的方程為或者.

或者.

3)設(shè)直線,,

可得

.

所以,即,

整理得到,所以,

.

因?yàn)?/span>

,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

所以的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,,,分別是,的中點(diǎn).

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】月,中國良渚古城遺址獲準(zhǔn)列入世界遺產(chǎn)名錄,標(biāo)志著中華五千年文明史得到國際社會(huì)認(rèn)可.良渚古城遺址是人類早期城市文明的范例,實(shí)證了中華五千年文明史.考古科學(xué)家在測定遺址年齡的過程中利用了放射性物質(zhì)因衰變而減少這一規(guī)律.已知樣本中碳的質(zhì)量隨時(shí)間(單位:年)的衰變規(guī)律滿足表示碳原有的質(zhì)量),則經(jīng)過年后,碳的質(zhì)量變?yōu)樵瓉淼?/span>________;經(jīng)過測定,良渚古城遺址文物樣本中碳的質(zhì)量是原來的,據(jù)此推測良渚古城存在的時(shí)期距今約在________年到年之間.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)長方體中,,,的中點(diǎn),點(diǎn)在線段.

1)試在線段上確定點(diǎn)的位置,使得異面直線所成角為,并請(qǐng)說明你的理由;

2)在滿足(1)的條件下,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為2的正方體中,點(diǎn)是對(duì)角線上的點(diǎn)(點(diǎn)不重合),則下列結(jié)論正確的個(gè)數(shù)為(

①存在點(diǎn),使得平面平面

②存在點(diǎn),使得平面;

③若的面積為,則

④若、分別是在平面與平面的正投影的面積,則存在點(diǎn),使得.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過作直線與橢圓交于兩點(diǎn),的周長為8

1)求橢圓的標(biāo)準(zhǔn)方程;

2)問:的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形中,兩腰,底邊,的三等分點(diǎn),的中點(diǎn).分別沿,將四邊形折起,使重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為的中點(diǎn).

1)證明:平面.

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1),求的單調(diào)區(qū)間;

(2)求函數(shù)在上的最值;

(3)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若是函數(shù)的極值點(diǎn),求的值及函數(shù)的極值;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案