橢圓數(shù)學公式+數(shù)學公式=1(a>b>0)的左、右焦點分別是F1F2,過F2作傾斜角為120°的直線與橢圓的一個交點為M,若MF1垂直于x軸,則橢圓的離心率為


  1. A.
    數(shù)學公式
  2. B.
    2-數(shù)學公式
  3. C.
    2(2-數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:如圖,Rt△MF2 F1中,tan60°==,建立關(guān)于a、c的方程,解方程求出 的值.
解答:如圖,
在Rt△MF1F2中,∠MF2F1=60°,F(xiàn)1F2=2c
∴MF2=4c,MF1=2c
MF1+MF2=4c+2c=2a?e==2-
故選B.
點評:本題考查直角三角形中的邊角關(guān)系,橢圓的簡單性質(zhì),一元二次方程的解法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓=1(ab>0)的離心率為,,則橢圓方程為( 。

A.=1

B.=1

C.=1

D.=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是橢圓+=1(a>b>0)上任意一點,P與兩焦點連線互相垂直,且P到兩準線距離分別為6、12,則橢圓方程為______________________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省鐵嶺市開原市高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過A(2,0),B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
(1)求橢圓方程;
(2)設F1、F2分別為橢圓的左、右焦點,M為線段AF2的中點,求tan∠ATM.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年陜西省延安市實驗中學高二(下)期中數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設F1、F2分別為橢圓的左、右焦點,M為線段AF1的中點,求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省合肥八中高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知橢圓+=1(a>b>0)的中心為O,右焦點為F、右頂點為A,右準線與x軸的交點為H,則的最大值為   

查看答案和解析>>

同步練習冊答案