A. | 3 | B. | $\sqrt{5}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
分析 畫出約束條件的可行域,化簡向量的模,利用表達(dá)式的幾何意義求解即可.
解答 解:作出平面區(qū)域如圖中陰影部分所示,
$|{\overrightarrow{OA}+\overrightarrow{OM}}|=\sqrt{{{(x+1)}^2}+{y^2}}$表示點(diǎn)B(-1,0)到點(diǎn)M(x,y)的距離.由圖可知,所求最小值即是點(diǎn)B到直線x+y-2=0的距離$d=\frac{{|{-1-2}|}}{{\sqrt{2}}}=\frac{{3\sqrt{2}}}{2}$.
故選:C.
點(diǎn)評 本題考查簡單線性規(guī)劃的應(yīng)用,考查計(jì)算能力以及數(shù)形結(jié)合的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{5}$i | B. | $\frac{2}{5}i$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{3+2\sqrt{2}}}{4}$ | C. | $\frac{{3+\sqrt{2}}}{4}$ | D. | $\frac{{3-\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com