已知圓O,直線l與橢圓C相交于P、Q兩點,O為原點.
(Ⅰ)若直線l過橢圓C的左焦點,且與圓O交于AB兩點,且,求直線l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.
(1)(2)

試題分析:解(Ⅰ)左焦點坐標為,設直線l的方程為
得,圓心O到直線l的距離
,∴,解得,.∴ 直線l的方程為
(Ⅱ)設,

,得…(※),且
重心恰好在圓上,得,
,即
,化簡得,代入(※)得

, 得,∴,
,得m的取值范圍為
點評:解決的關(guān)鍵是根據(jù)直線與圓錐曲線的位置關(guān)系,聯(lián)立方程組來結(jié)合韋達定理來得到,屬于基礎題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點M,使以PQ為直徑的圓經(jīng)過點F2,若存在,求出M點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,過拋物線的焦點F的直線依次交拋物線及其準線于點A、B、C,若|BC |=2|BF|,且|AF|=3,則拋物線的方程是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線與拋物線有一個公共的焦點,且兩曲線的一個交點為,若,則雙曲線的漸近線方程為.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以雙曲線的離心率為首項,以函數(shù)的零點為公比的等比數(shù)列的前項的和
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點是拋物線的準線與雙曲線的兩條漸近線所圍成的三角形平面區(qū)域內(nèi)(含邊界)的任意一點,則的最大值為_    __.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左、右焦點分別為,已知橢圓上的任意一點,滿足,過作垂直于橢圓長軸的弦長為3.

(1)求橢圓的方程;
(2)若過的直線交橢圓于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左焦點為F,直線x=m與橢圓相交于點A、B,當△FAB的周長最大時,△FAB的面積是   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為雙曲線的左準線與x軸的交點,點,若滿足的點在雙曲線上,則該雙曲線的離心率為    .

查看答案和解析>>

同步練習冊答案