已知數(shù)列{an}滿足a1=4,an=4,令.
(1)求證數(shù)列{bn}是等差數(shù)列.(2)求數(shù)列{an}的通項公式.
解:(1)
,
=
,
于是有
=
+
,
,即b
n-b
n-1=
,
故有數(shù)列{b
n}為等差數(shù)列,公差為
.
(2)
=
.
所以有b
n=
,
于是有
,
∴a
n=
+2.
分析:(1)由題設(shè)知
,于是有
=
+
,b
n-b
n-1=
,由此可知數(shù)列{b
n}為等差數(shù)列.
(2)由題設(shè)知b
n=
,于是有
,兩邊同時取倒數(shù)后能夠得到a
n=
+2.
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意等差數(shù)列的性質(zhì)的應(yīng)用和判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足:a
1=1且
an+1=, n∈N*.
(1)若數(shù)列{b
n}滿足:
bn=(n∈N*),試證明數(shù)列b
n-1是等比數(shù)列;
(2)求數(shù)列{a
nb
n}的前n項和S
n;
(3)數(shù)列{a
n-b
n}是否存在最大項,如果存在求出,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足
a1+a2+a3+…+an=2n+1則{a
n}的通項公式
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足:a
1=
,且a
n=
(n≥2,n∈N
*).
(1)求數(shù)列{a
n}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a
1•a
2•…a
n<2•n!
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足a
n+1=|a
n-1|(n∈N
*)
(1)若
a1=,求a
n;
(2)若a
1=a∈(k,k+1),(k∈N
*),求{a
n}的前3k項的和S
3k(用k,a表示)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2012•北京模擬)已知數(shù)列{a
n}滿足a
n+1=a
n+2,且a
1=1,那么它的通項公式a
n等于
2n-1
2n-1
.
查看答案和解析>>