函數(shù)y=
1
x+1
的定義域?yàn)榧螦,集合B={x|ax-1<0,a>0},集合c={x|log
1
2
x>1}

(1)求A∪C;
(2)若C⊆(A∩B),求實(shí)數(shù)a的取值范圍.
分析:(1)求出函數(shù)y=
1
x+1
的定義域,確定出A,求出集合C中其他不等式的解集確定出C,求出A與C的并集即可;
(2)根據(jù)a大于0表示出集合B中不等式的解集,進(jìn)而求出A與B的交集,根據(jù)C為交集的子集列出關(guān)于a的不等式,求出不等式的解集即可得到a的范圍.
解答:解:(1)函數(shù)y=
1
x+1
中,x+1>0,
解得:x>-1,即A=(-1,+∞),
集合C中的不等式變形得:
log
 
1
2
x>
log
 
1
2
1
2
,即0<x<
1
2

∴C=(0,
1
2
),
則A∪C=(-1,+∞);                           
(2)∵a>0,∴ax-1<0,即x<
1
a

∴B=(-∞,
1
a
),
∴A∩B=(-1,
1
a
),
∵C⊆(A∩B),
1
a
1
2
,
解得:0<a≤2.
點(diǎn)評(píng):此題考查了并集及其運(yùn)算,以及集合的包含關(guān)系判斷及應(yīng)用,熟練掌握并集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)=ax+
1x+b
(a≠0)
的圖象過點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心Q;
(3)證明:線段PM,PN長(zhǎng)度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z)
,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2)處的切線方程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式,并判斷函數(shù)y=f(x)的圖象是否為中心對(duì)稱圖形?若是,請(qǐng)求其對(duì)稱中心;否則說(shuō)明理由.
(II)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
(III) 將函數(shù)y=f(x)的圖象向左平移一個(gè)單位后與拋物線y=ax2(a為非0常數(shù))的圖象有幾個(gè)交點(diǎn)?(說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:海南 題型:解答題

設(shè)函數(shù)f(x)=ax+
1
x+b
(a,b∈Z)
,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案