(2008•南匯區(qū)二模)將棱長相等的正方體按如圖所示的形狀擺放,從上往下依次為第1層、第2層、第3層、….則第2008層正方體的個(gè)數(shù)是
2017036
2017036
分析:先設(shè)上往下各層的正方體數(shù)目組成數(shù)列{an},再觀察圖形得出:a2-a1=2,a3-a2=3…an-an-1=n.最后利用疊加法求出數(shù)列的通項(xiàng)公式,再把2008代入即可求出結(jié)論.
解答:解:設(shè)上往下各層的正方體數(shù)目組成數(shù)列{an}
由題得:a2-a1=2,
a3-a2=3

an-an-1=n.
把上面各式相加得:an-a1=2+3+4+…+n
所以an=a1+2+3+…+n=1+2+3+…+n=
n(n+1)
2

故 a2008=
2008×(1+2008)
2
=2017036.
故答案為:2017036
點(diǎn)評(píng):本題主要考查的知識(shí)點(diǎn)是歸納推理,數(shù)列的應(yīng)用問題.解決本題的關(guān)鍵在于觀察出數(shù)列各項(xiàng)之間的關(guān)系,再結(jié)合疊加法求出數(shù)列的通項(xiàng)公式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南匯區(qū)二模)一列火車自A城駛往B城,沿途有n個(gè)車站(包括起點(diǎn)站A和終點(diǎn)站B),車上有一節(jié)郵政車廂,每?恳徽颈阋断虑懊娓髡景l(fā)往該站的郵袋各一個(gè),同時(shí)又要裝上該站發(fā)往后面各站的郵袋各一個(gè),試求:
(1)列車從第k站出發(fā)時(shí),郵政車廂內(nèi)共有郵袋數(shù)是多少個(gè)?
(2)第幾站的郵袋數(shù)最多?最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南匯區(qū)二模)過定點(diǎn)(1,2)作兩直線與圓x2+y2+kx+2y+k2-15=0相切,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南匯區(qū)二模)已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則a12+a22+…an2=
1
3
(4n-1)
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南匯區(qū)二模)(理) 已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16,則自然數(shù)n=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南匯區(qū)二模)(文) 已知集合M={a,0},N={x|2x2-5x<0,x∈Z},若M∩N≠∅,則a=
1或2
1或2

查看答案和解析>>

同步練習(xí)冊(cè)答案