若等差數(shù)列{an}的公差d≠0,且a1,a3,a7成等比數(shù)列,則
a1+a3
a2+a4
等于(  )
分析:由等差數(shù)列{an}的公差d≠0,且a1,a3,a7成等比數(shù)列,知(a1+2d)2=a1(a1+6d),解得a1=2d,由此能求出
a1+a3
a2+a4
的值.
解答:解:∵等差數(shù)列{an}的公差d≠0,且a1,a3,a7成等比數(shù)列,
∴(a1+2d)2=a1(a1+6d),
解得a1=2d,
a1+a3
a2+a4
=
a1+a1+2d
a1+d+a1+3d

=
6d
8d
=
3
4

故選A.
點(diǎn)評(píng):本題考查等差數(shù)列和等比數(shù)列的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、若等差數(shù)列{an}的前5項(xiàng)和S5=30,且a2=7,則a7=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}的公差為d,前n項(xiàng)的和為Sn,則數(shù)列{
Sn
n
}
為等差數(shù)列,公差為
d
2
.類似地,若各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的公比為q,前n項(xiàng)的積為Tn,則數(shù)列{
nTn
}
為等比數(shù)列,公比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin2x,若等差數(shù)列{an}的第5項(xiàng)的值為f′(
π6
),則a1a2+a2a9+a9a8+a8a1=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江模擬)若等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),若a2:a3=5:2,則S3:S5=
3:2
3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}的項(xiàng)數(shù)m為奇數(shù),且a1+a3+a5+…+am=52,a2+a4+…+am-1=39則m=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案