設(shè)橢圓
x2
a2
+
y2
1
=1(a>1)的左、右焦點(diǎn)分別為F1,F(xiàn)2,A是橢圓上位于x軸上方的動(dòng)點(diǎn).
(Ⅰ)當(dāng)
AF1
AF2
取最小值時(shí),求A點(diǎn)的坐標(biāo);
(Ⅱ)在(Ⅰ)的情形下,是否存在以A為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形?若存在,求出共有幾個(gè);若不存在,請(qǐng)說(shuō)明理由.
分析:(I)設(shè)出點(diǎn)的坐標(biāo),利用數(shù)量積公式,結(jié)合配方法,即可求得結(jié)論;
(II)設(shè)AC的直線方程為y=kx+1(不妨設(shè)k>0),代入橢圓的方程中,求出AB,AC的長(zhǎng),利用|AB|=|AC|,可得方程,考慮方程根的情況,即可得出結(jié)論.
解答:解:(Ⅰ)設(shè)A(x,y),F(xiàn)1(-c,0).F2(c,0),則
AF1
AF2
=x2+y2-c2
因?yàn)锳(x,y)在橢圓上,所以y2=1-
x2
a2

所以
AF1
AF2
=x2(1-
1
a2
)+1-c2

∵a>1,∴當(dāng)x=0時(shí),
AF1
AF2
取得最小值,此時(shí)A點(diǎn)的坐標(biāo)為A(0,1).
(Ⅱ)設(shè)兩個(gè)頂點(diǎn)為B,C,顯然直線AC斜率存在,不妨設(shè)AC的直線方程為y=kx+1(不妨設(shè)k>0),代入橢圓的方程中可得(
1
a2
+k2)x2+2kx=0
,解得x1=0(即A點(diǎn)的橫坐標(biāo)),x2=-
2k
1
a2
+k2

由弦長(zhǎng)公式得:|AC|=
1+k2
2k
1
a2
+k2
(k>0)
同理:|AB|=
1+
1
k2
2
k
1
a2
+
1
k2

由|AB|=|AC|,即
1+k2
2k
1
a2
+k2
=
1+
1
k2
2
k
1
a2
+
1
k2
,
化簡(jiǎn)得:(k-1)[k2+(1-a2)k+1]=0.
考慮關(guān)于k的方程k2+(1-a2)k+1=0,其判別式△=(1-a22-4
(1)當(dāng)△>0時(shí),a>
3
,其兩根設(shè)為k1,k2
由于k1+k2=a2-1>0,k1k2=1>0,故兩根必為正根,
顯然k1≠1,k2≠1,故關(guān)于k的方程(k-1)[k2+(1-a2)k+1]=0有三解,相應(yīng)地,這樣的等腰直角三角形有三個(gè).
(2)當(dāng)△=0時(shí),a=
3
,此時(shí)方程k2+(1-a2)k+1=0的解k=1,故方程(k-1)[k2+(1-a2)k+1]=0只有一解,相應(yīng)地,這樣的等腰直角三角形只有一個(gè).
(3)當(dāng)△<0時(shí),顯然方程只有k=1這一個(gè)解,相應(yīng)地,這樣的等腰直角三角形只有一個(gè).
綜上:當(dāng)a>
3
時(shí),這樣的等腰直角三角形有三個(gè);當(dāng)1<a≤
3
時(shí),這樣的等腰直角三角形只有一個(gè).
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,A是橢圓上的一點(diǎn),C,原點(diǎn)O到直線AF1的距離為
1
3
|OF1|

(Ⅰ)證明a=
2
b
;
(Ⅱ)求t∈(0,b)使得下述命題成立:設(shè)圓x2+y2=t2上任意點(diǎn)M(x0,y0)處的切線交橢圓于Q1,Q2兩點(diǎn),則OQ1⊥OQ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的動(dòng)點(diǎn)Q,過(guò)動(dòng)點(diǎn)Q作橢圓的切線l,過(guò)右焦點(diǎn)作l的垂線,垂足為P,則點(diǎn)P的軌跡方程為( 。
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2a2
+y2=1   (a>1)
短軸的一個(gè)端點(diǎn),Q為橢圓上一個(gè)動(dòng)點(diǎn),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•即墨市模擬)設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)-1<a<-
1
2
,則橢圓
x2
a2
+
y2
(a+1)2
=1
的離心率的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案