已知f(x)=sinx,x∈R,g(x)的圖象與f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)
對(duì)稱(chēng),則在區(qū)間(-π,π)上滿(mǎn)足f(x)≥g(x)的x的范圍是(  )
A、(-π,-
4
]∪[
π
4
,π)
B、(-π,-
π
4
]∪[
4
,π)
C、[-
π
4
,
4
]
D、[-
4
,
π
4
]
分析:首先設(shè)出f(x)上任意一點(diǎn),然后求出關(guān)于點(diǎn)(
π
4
,0)
對(duì)稱(chēng)的點(diǎn)為:(x,y),建立(a,b)與(x,y)的關(guān)系,求出g(x),最后求出x的范圍即可.
解答:解:∵f(x)=sinx,x∈R
而g(x)的圖象與f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)
對(duì)稱(chēng)
設(shè):(a,b)為f(x)上任意一點(diǎn),
設(shè)關(guān)于點(diǎn)(
π
4
,0)
對(duì)稱(chēng)的點(diǎn)為:(x,y)
∴根據(jù)題意有:
a+x=
π
2
b+y=0

解得:
a=
π
2
-x
b=-y

∵(a,b)為f(x)上任意一點(diǎn),
∴b=sina
即:-y=sin(
π
2
-x)

∴y=-cosx
∴在區(qū)間(-π,π)上滿(mǎn)足f(x)≥g(x)的x的范圍是:
[-
π
4
,
4
]

故選C
點(diǎn)評(píng):本題考查正弦函數(shù)的對(duì)稱(chēng)性問(wèn)題,通過(guò)對(duì)正弦函數(shù)的轉(zhuǎn)化,求出對(duì)稱(chēng)函數(shù),最后比較正弦余弦函數(shù)的大小,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( 。
A、與g(x)的圖象相同
B、與g(x)的圖象關(guān)于y軸對(duì)稱(chēng)
C、向左平移
π
2
個(gè)單位,得到g(x)的圖象
D、向右平移
π
2
個(gè)單位,得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,則f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的圖象與y=-1的圖象的相鄰兩交點(diǎn)間的距離為π,要得到y(tǒng)=f(x)的圖象,只需把y=cos2x的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sinπx.
(1)設(shè)g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)
;
(2)設(shè)h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此時(shí)x值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案