已知二次函數(shù)f(x)有兩個零點0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖像關于原點對稱.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在區(qū)間[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.
(1)f(x)=x2+2x. g(x)=-x2+2x
(2)(-∞,0]
【解析】
試題分析:(1)依題意,設f(x)=ax(x+2)=ax2+2ax(a>0).
f(x)圖像的對稱軸是x=-1,∴f(-1)=-1,
即a-2a=-1,∴a=1,∴f(x)=x2+2x.
∵函數(shù)g(x)的圖像與f(x)的圖像關于原點對稱,
∴g(x)=-f(-x)=-x2+2x.
(2)由(1)得h(x)=x2+2x-λ(-x2+2x)=(λ+1)x2+2(1-λ)x.
①當λ=-1時,h(x)=4x滿足在區(qū)間[-1,1]上是增函數(shù);
②當λ<-1時,h(x)圖像對稱軸是x=,
則≥1,又λ<-1,解得λ<-1;
③當λ>-1時,同理需≤-1,
又λ>-1,解得-1<λ≤0.
綜上,滿足條件的實數(shù)λ的取值范圍是(-∞,0].
考點:二次函數(shù)性質
點評:主要是考查了待定系數(shù)法求解函數(shù)解析式,以及二次函數(shù)性質的運用,屬于基礎題。
科目:高中數(shù)學 來源: 題型:
1 |
2 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
3 |
x |
1 |
10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
bx-1 | a2x+2b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
-x2-x+2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
bx-1 | a2x+2b |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com