【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

【答案】(1) 當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)減區(qū)間,

當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)2.

【解析】試題分析:

(1)首先對(duì)函數(shù)求導(dǎo),然后對(duì)參數(shù)分類討論可得當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)減區(qū)間,

當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

(2)將原問(wèn)題轉(zhuǎn)化為上恒成立,考查函數(shù)的性質(zhì)可得整數(shù)的最小值是2.

試題解析:

(1),函數(shù)的定義域?yàn)?/span>.

當(dāng)時(shí),,則上單調(diào)遞增,

當(dāng)時(shí),令,則(舍負(fù)),

當(dāng)時(shí),,為增函數(shù),

當(dāng)時(shí),,為減函數(shù),

∴當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)減區(qū)間,

當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)解法一:由,

,

∴原命題等價(jià)于上恒成立,

,

,則上單調(diào)遞增,

,,

∴存在唯一,使,.

∴當(dāng)時(shí),,為增函數(shù),

當(dāng)時(shí),為減函數(shù),

時(shí),,

,則

,所以.

故整數(shù)的最小值為2.

解法二:得,

,

,

,

時(shí),上單調(diào)遞減,

,∴該情況不成立.

時(shí),

當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增,

恒成立,

.

,顯然為單調(diào)遞減函數(shù).

,且,

∴當(dāng)時(shí),恒有成立,

故整數(shù)的最小值為2.

綜合①②可得,整數(shù)的最小值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC—A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB160°AB⊥B1C.

(1)求證:平面AA1B1B⊥平面BB1C1C;

(2)AB2,求三棱柱ABC—A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】宿州市某登山愛(ài)好者為了解山高y(百米)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了4次山高與相應(yīng)的氣溫,并制作了對(duì)照表,由表中數(shù)據(jù),得到線性回歸方程為y=﹣2x+a,由此估計(jì)山高為72(百米)處的氣溫為(

氣溫x(℃)

18

13

10

﹣1

山高y(百米)

24

34

38

64


A.﹣10
B.﹣8
C.﹣6
D.﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a、b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(﹣∞,﹣1)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性. 附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83


(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計(jì)

總計(jì)


(2)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2名,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn), 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且

(1)求橢圓的方程;

(2)已知直線 被圓 所截得的弦長(zhǎng)為,若直線與橢圓交于 兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn), 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且

(1)求橢圓的方程;

(2)已知直線 被圓 所截得的弦長(zhǎng)為,若直線與橢圓交于, 兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x2+ax+3,已知不等式f(x)<0的解集為{x|1<x<3}.
(1)求a;
(2)若不等式f(x)≥m的解集是R,求實(shí)數(shù)m的取值范圍;
(3)若f(x)≥nx對(duì)任意的實(shí)數(shù)x≥1成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期為2 π,最小值為﹣2,且當(dāng)x= 時(shí),函數(shù)取得最大值4. (Ⅰ)求函數(shù) f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若當(dāng)x∈[ ]時(shí),方程f(x)=m+1有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案