(2012•福州模擬)若將有理數(shù)集Q分成兩個非空的子集M與N,且滿足M∪N=Q,M∩N=∅,M中的每一個元素都小于N中的每一個元素,則稱(M,N)為有理數(shù)集的一個分割.試判斷,對于有理數(shù)集的任一分割(M,N),下列選項中,不可能成立的是(  )
分析:M,N為一個分割,則一個為開區(qū)間,一個為半開半閉區(qū)間.從而 M,N中,一個有最值,一個沒有最值.
解答:解:∵M,N為一個分割,
∴M,N中,一個為開區(qū)間,一個為半開半閉區(qū)間.
從而 M,N中,一個有最值,一個沒有最值.
故M有一個最大元素,N有一個最小元素不可能成立.
故選C.
點評:本題考查交、并、補集的混合運算,是基礎題.解題時要認真審題,注意新定義的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•福州模擬)在數(shù)列{an}中,a1=2,點(an,an+1)(n∈N*)在直線y=2x上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=log2an,求數(shù)列
1bn×bn+1
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福州模擬)在約束條件
x≤1
y≤2
x+y-1≥0
下,目標函數(shù)z=ax+by(a>0,b>0)的最大值為1,則ab的最大值等于
1
8
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福州模擬)假設某班級教室共有4扇窗戶,在每天上午第三節(jié)課上課預備鈴聲響起時,每扇窗戶或被敞開或被關(guān)閉,且概率均為0.5,記此時教室里敞開的窗戶個數(shù)為X.
(Ⅰ)求X的分布列;
(Ⅱ)若此時教室里有兩扇或兩扇以上的窗戶被關(guān)閉,班長就會將關(guān)閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時該教室里敞開的窗戶個數(shù)為y,求y的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福州模擬)sin47°cosl3°+sinl3°sin43°的值等于
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福州模擬)如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求證:BD⊥平面POA;
(Ⅱ)記三棱錐P-ABD體積為V1,四棱錐P-BDEF體積為V2.求當PB取得最小值時的V1:V2值.

查看答案和解析>>

同步練習冊答案