精英家教網 > 高中數學 > 題目詳情

【題目】某課外實習作業(yè)小組調查了1000名職場人士,就入職兩家公司的意愿做了統(tǒng)計,得到如下數據分布:

(1)請分別計算40歲以上(含40歲)與40歲以下全體中選擇甲公司的頻率(保留兩位小數),根據計算結果,你能初步得出什么結論?

(2)若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為,測得出“選擇意愿與年齡有關系”的結論犯錯誤的概率的上限是多少?并用統(tǒng)計學知識分析,選擇意愿與年齡變量和性別變量哪一個關聯(lián)性更大?

附:

【答案】(1)見解析;(2)見解析.

【解析】試題分析:

(1)由題意計算可得40歲以上(含40歲)與40歲以下群體中選擇甲公司的頻率分別為

則年齡40歲以上(含40歲)的群體選擇甲公式的可能性要大.

(2)由題意可知得出選擇意愿與年齡有關系的結論犯錯的概率的上限是,列出列聯(lián)表,計算可得觀測值 ,則與年齡相比,選擇意愿與性別關聯(lián)性更大.

試題解析:

1)設40歲以上(含40歲)與40歲以下群體中選擇甲公司的頻率分別為 ,

由數據知

因為,所以年齡40歲以上(含40歲)的群體選擇甲公式的可能性要大.

2)因為,根據表中對應值,得出選擇意愿與年齡有關系的結論犯錯的概率的上限是

由數據分布可得選擇意愿與性別兩個分類變量的列聯(lián)表:

計算

,查表知得出結論選擇意愿與性別有關的犯錯誤的概率上限為

,所以與年齡相比,選擇意愿與性別關聯(lián)性更大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是 (為參數).

(1)將曲線的極坐標方程化為直角坐標方程;

(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某購物網站對在7座城市的線下體驗店的廣告費指出(萬元)和銷售額(萬元)的數據統(tǒng)計如下表:

城市

廣告費支出

銷售額

(Ⅰ)若用線性回歸模型擬合關系,求關于的線性回歸方程;

(Ⅱ)若用對數函數回歸模型擬合的關系,可得回歸方程,經計算對數函數回歸模型的相關系數約為,請說明選擇哪個回歸模型更合適,并用此模型預測城市的廣告費用支出萬元時的銷售額.

參考數據: , , , .

參考公式: , .

相關系數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若,則的值域是______;若的值域是,則實數的取值范圍是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了治理大氣污染,某市2017年初采用了一系列措施,比如“煤改電”,“煤改氣”,“國Ⅰ,Ⅱ輕型汽油車限行”,“整治散亂污染企業(yè)”等.下表是該市2016年和2017年12月份的空氣質量指數(AQI)(AQI指數越小,空氣質量越好)統(tǒng)計表.

表1:2016年12月AQI指數表:單位(

日期

1

2

3

4

5

6

7

8

9

10

11

AQI

47

123

232

291

78

103

159

132

37

67

204

日期

12

13

14

15

16

17

18

19

20

21

22

AQI

270

78

40

51

135

229

270

265

409

429

151

日期

23

24

25

26

27

28

29

30

31

AQI

47

155

191

64

54

85

75

249

329

表2:2017年12月AQI指數表:單位(

日期

1

2

3

4

5

6

7

8

9

10

11

AQI

91

187

79

28

44

49

27

41

56

43

28

日期

12

13

14

15

16

17

18

19

20

21

22

AQI

28

49

94

62

40

46

48

55

44

74

62

日期

23

24

25

26

27

28

29

30

31

AQI

50

50

46

41

101

140

221

157

55

根據表中數據回答下列問題

(Ⅰ)求出2017年12月的空氣質量指數的極差;

)根據《環(huán)境空氣質量指數(AQI)技術規(guī)定(試行)》規(guī)定:當空氣質量指數為050時,空氣質量級別為一級.從2017年12月12日到12月16這五天中,隨機抽取三天,空氣質量級別為一級的天數為,求的分布列及數學期望;

(Ⅲ)你認為該市2017年初開始采取的這些大氣污染治理措施是否有效?結合數據說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐 中, .

(1)證明:頂點在底面的射影在的平分線上;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市政府為了引導居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價:若用水量不超過12噸時,按4元/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費;若用水量超過14噸時,超過14噸部分按7.8元/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數據按照分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)假設用抽到的100戶居民月用水量作為樣本估計全市的居民用水情況.

(。┈F從全市居民中依次隨機抽取5戶,求這5戶居民恰好3戶居民的月用水量都超過12噸的概率;

(ⅱ)試估計全市居民用水價格的期望(精確到0.01);

(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是.若李某201617月份水費總支出為294.6元,試估計李某7月份的用水噸數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,過點且與軸垂直的直線為, 軸,交于點,直線垂直平分,交于點.

(1)求點的軌跡方程;

(2)記點的軌跡為曲線,直線與曲線交于不同兩點,且為常數),直線平行,且與曲線相切,切點為,試問的面積是否為定值.若為定值,求出的面積;若不是定值,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn,等比數列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項公式;

(2)若T3=21,求S3

查看答案和解析>>

同步練習冊答案