分析 (1)利用等差數列的性質或定義即可得出.
(2)利用等差數列的通項公式可得an,故$\frac{4n-2}{{3{a_n}-n-1}}=\frac{4}{{{3^n}-1}}$,即證明:$\sum_{i=1}^n{\frac{4}{{{3^i}-1}}}≤3?\sum_{i=1}^n{\frac{1}{{{3^i}-1}}}<\frac{3}{4}$.利用放縮利用等比數列的求和公式、或放縮利用“裂項求和”方法即可得出.
解答 解:(1)a1=1,且${a_{n+1}}=3{a_n}+{3^n}-1⇒{a_2}=5,{a_3}=23$,
∴$\frac{{{a_1}+λ}}{3^1}+\frac{{{a_3}+λ}}{3^3}=2\frac{{{a_2}+λ}}{3^2}⇒\frac{1+λ}{3}+\frac{23+λ}{27}=2\frac{5+λ}{9}⇒λ=-\frac{1}{2}$.
另解:$\frac{{{a_{n+1}}+λ}}{{{3^{n+1}}}}-\frac{{{a_n}+λ}}{3^n}=\frac{{3{a_n}+{3^n}-1+λ}}{{{3^{n+1}}}}-\frac{{{a_n}+λ}}{3^n}=\frac{1}{3}-\frac{2λ+1}{{{3^{n+1}}}}$,則$λ=-\frac{1}{2}$(與n無關).
(2)證明:${a_{n+1}}=3{a_n}+{3^n}-1⇒\frac{{{a_{n+1}}-\frac{1}{2}}}{{{3^{n+1}}}}-\frac{{{a_n}-\frac{1}{2}}}{3^n}=\frac{1}{3}$,
∴$\left\{{\frac{{{a_n}-\frac{1}{2}}}{3^n}}\right\}$是以$\frac{1}{6}$為首項$\frac{1}{3}$為公差的等差數列,
則${a_n}=\frac{1}{2}+\frac{2n-1}{6}•{3^n}$.
故$\frac{4n-2}{{3{a_n}-n-1}}=\frac{4}{{{3^n}-1}}$,即證明:$\sum_{i=1}^n{\frac{4}{{{3^i}-1}}}≤3?\sum_{i=1}^n{\frac{1}{{{3^i}-1}}}<\frac{3}{4}$.
證法1:$\frac{1}{{{3^n}-1}}≤\frac{1}{2}•{(\frac{1}{3})^{n-1}}⇒$$\sum_{i=1}^n{\frac{1}{{{3^i}-1}}}≤\frac{1}{2}\sum_{i=2}^n{\frac{1}{{{3^{i-1}}}}}=\frac{1}{2}•\frac{{(1-{{(\frac{1}{3})}^{n-1}})}}{{1-\frac{1}{3}}}<\frac{3}{4}$.
證法2:$\frac{1}{{{3^n}-1}}≤\frac{3}{4}•(\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}})⇒$$\sum_{i=1}^n{\frac{1}{{{3^i}-1}}}<\sum_{i=1}^n{\frac{3}{4}•(\frac{1}{{{2^i}-1}}-\frac{1}{{{2^{i+1}}-1}})}=\frac{3}{4}(1-\frac{1}{{{2^{i+1}}-1}})<\frac{3}{4}$.
點評 本題考查了數列遞推關系、放縮法、等差數列與等比數列的求和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于難題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com