已知
a
b
均為單位向量,它們的夾角為60°,那么|
a
-
b
|等于( 。
A、1
B、
2
C、
3
D、2
分析:由于本題中未給出向量的坐標,故求向量的模時,主要是根據(jù)向量數(shù)量的數(shù)量積計算公式,求出向量模的平方,即向量的平方,再開方求解.
解答:解:∵
a
b
均為單位向量,它們的夾角為60°
∴|
a
|=|
b
|=1,
a
b
=
1
2

|
a
-
b
|2
=(
a
-
b
)
2

=|
a
|
2
+|
b
|
2
-2
a
b

=1
|
a
-
b
|
=1
故選A.
點評:求向量的模一般有兩種情況:若已知向量的坐標,或向量起點和終點的坐標,則
a
=
x2+y2
|
AB
|=
(x1-x2)2+(y1-y2)2
;若未知向量的坐標,只是已知條件中有向量的模及夾角,則求向量的模時,主要是根據(jù)向量數(shù)量的數(shù)量積計算公式,求出向量模的平方,即向量的平方,再開方求解,考查運算能力,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有兩個質(zhì)點A、B分別位于直角坐標系點(0,0),(1,1),從某一時刻開始,每隔1秒,質(zhì)點分別向上下左右任一方向移動一個單位,已知質(zhì)點A向左右移動的概率都是
1
4
,向上移動的概率為
1
3
,向下移動的概率為x;質(zhì)點B向四個方向移動的概率均為y.
(1)求x和y的值;
(2)試問至少經(jīng)過幾秒,A、B能同時到達點C(2,1),并求出在最短時間內(nèi)同時到達點C的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•菏澤二模)已知函數(shù)①y=sinx+cosx,②y=2
2
sinxcosx,則下列結論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學 題型:013

已知a,b,且它們均為單位向量,則∠AOB的平分線上的單位向最

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面上有兩個質(zhì)點A(0,0), B(2,2),在某一時刻開始每隔1秒向上下左右任一方向移動一個單位。已知質(zhì)點A向左,右移動的概率都是,向上,下移動的概率分別是和P, 質(zhì)點B向四個方向移動的概率均為q:

 (1)求P和q的值;

 (2)試判斷至少需要幾秒,A,B能同時到達D(1,2),并求出在最短時間同時到達的概率?

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省菏澤市高考數(shù)學二模試卷(文科)(解析版) 題型:選擇題

已知函數(shù)①y=sinx+cosx,②y=2sinxcosx,則下列結論正確的是( )
A.兩個函數(shù)的圖象均關于點(-,0)成中心對稱
B.①的縱坐標不變,橫坐標擴大為原來的2倍,再向右平移個單位即得②
C.兩個函數(shù)在區(qū)間(-)上都是單調(diào)遞增函數(shù)
D.兩個函數(shù)的最小正周期相同

查看答案和解析>>

同步練習冊答案