【題目】設函數f(x)=ex﹣x,h(x)=﹣kx3+kx2﹣x+1.
(1)求f(x)的最小值;
(2)設h(x)≤f(x)對任意x∈[0,1]恒成立時k的最大值為λ,證明:4<λ<6.
【答案】
(1)解:∵f(x)=ex﹣x,∴f′(x)=ex﹣1,
x∈(﹣∞,0)時,f′(x)<0,f(x)遞減,
x∈(0,+∞)時,f′(x)>0,f(x)遞增,
∴f(x)min=f(0)=1
(2)解:由h(x)≤f(x),化簡可得k(x2﹣x3)≤ex﹣1,
當x=0,1時,k∈R,
當x∈(0,1)時,k≤ ,
要證:4<λ<6,則需證以下兩個問題:
① >4對任意x∈(0,1)恒成立,
②存在x0∈(0,1),使得 <6成立,
先證:① >4,即證ex﹣1>4(x2﹣x3),
由(1)可得:ex﹣x≥1恒成立,
∴ex﹣1≥x,又x≠0,∴ex﹣1>x,
即證x≥4(x2﹣x3)1≥4(x﹣x2)(2x﹣1)2≥0,
(2x﹣1)2≥0,顯然成立,
∴ >4對任意x∈(0,1)恒成立,
再證②存在x0∈(0,1),使得 <6成立,
取x0= , =8( ﹣1),
∵ < ,∴8( ﹣1)<6× =6,
故存在x0∈(0,1),使得 <6,
由①②可得:4<λ<6
【解析】(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間,求出函數的最小值即可;(2)問題轉化為證明① >4對任意x∈(0,1)恒成立,②存在x0∈(0,1),使得 <6成立,根據函數的單調性證明即可.
【考點精析】認真審題,首先需要了解函數的最值及其幾何意義(利用二次函數的性質(配方法)求函數的最大(。┲担焕脠D象求函數的最大(。┲;利用函數單調性的判斷函數的最大(小)值).
科目:高中數學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(1)用分層抽樣的方法在喜歡打藍球的學生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍球是否與性別有關,計算出K2 , 你有多大的把握認為是否喜歡打藍球與性別有關? 附:
下面的臨界值表供參考:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,﹣1].
(1)求m的值;
(2)若a,b,c∈R,且 + + =m,求證:a2+b2+c2≥36.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
①當切線在兩坐標軸上的截距為零時,設切線方程為y=kx,
則 ,解得k=2± ,
從而切線方程為y=(2± )x.
②當切線在兩坐標軸上的截距不為零時,設切線方程為x+y-a=0,則 ,解得a=-1或3,
從而切線方程為x+y+1=0或x+y-3=0.
綜上,切線方程為(2+ )x-y=0或(2- )x-y=0或x+y+1=0或x+y-3=0
(2)點P在直線l:2x-4y+3=0上,過點P作圓C的切線,切點記為M,求使|PM|最小的點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點,以O為原點,射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標系.若E、F分別為PA、PB的中點,求A、B、C、D、E、F的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 .
(1)求函數f(x)的單調區(qū)間和極值;
(2)若函數y=g(x)對任意x滿足g(x)=f(4﹣x),求證:當x>2,f(x)>g(x);
(3)若x1≠x2 , 且f(x1)=f(x2),求證:x1+x2>4.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線l過定點P(0,1),且與直線l1:x-3y+10=0,l2:2x+y-8=0分別交于A、B兩點.若線段AB的中點為P,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com