【題目】某零售店近5個(gè)月的銷售額和利潤(rùn)額資料如下表:

商店名稱

銷售額/千萬元

3

5

6

7

9

利潤(rùn)額/百萬元

2

3

3

4

5

(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個(gè)變量有怎樣的相關(guān)關(guān)系;

(2)用最小二乘法計(jì)算利潤(rùn)額關(guān)于銷售額的回歸直線方程;

(3)當(dāng)銷售額為4千萬元時(shí),利用(2)的結(jié)論估計(jì)該零售店的利潤(rùn)額(百萬元).

[參考公式:,]

【答案】(1)散點(diǎn)圖如下:

,

兩個(gè)變量呈正線性相關(guān)關(guān)系;

2)回歸方程為;(3)當(dāng)x=4時(shí),y=2.4 該店的利潤(rùn)額為2.4百萬元.

【解析】

(1)建立適當(dāng)?shù)淖鴺?biāo)系,畫出散點(diǎn)圖,看趨勢(shì)確定變量間的關(guān)系;

(2)分別求出、 ,代入公式求出、,即可求得回歸方程;

(3)令,代入回歸方程,求出利潤(rùn)額.

(1)畫出如圖散點(diǎn)圖:

由散點(diǎn)圖可看出變量成正線性相關(guān)關(guān)系.

(2)平均數(shù):,,

將數(shù)據(jù)代入公式可得:,,

所以回歸直線方程為.

(3)將代入回歸方程,解得:,所以利潤(rùn)額為2.4百萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C:x2=2py(p>0)的焦點(diǎn)為F,過F的直線l交C于A,B兩點(diǎn),交x軸于點(diǎn)D,B到x軸的距離比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若SBOF=SAOD , 求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月智能共享單車項(xiàng)目正式登陸某市,兩種車型“小綠車”、“小黃車”采用分時(shí)段計(jì)費(fèi)的方式,“小綠車”每30分鐘收費(fèi)不足30分鐘的部分按30分鐘計(jì)算;“小黃車”每30分鐘收費(fèi)1元不足30分鐘的部分按30分鐘計(jì)算有甲、乙、丙三人相互獨(dú)立的到租車點(diǎn)租車騎行各租一車一次設(shè)甲、乙、丙不超過30分鐘還車的概率分別為,,三人租車時(shí)間都不會(huì)超過60分鐘甲、乙均租用“小綠車”,丙租用“小黃車”.

求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;

2設(shè)甲、乙、丙三人所付的費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)討論的單調(diào)性;

(2)若存在及唯一正整數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若 R),求證: 對(duì)a∈R,且a≠0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D為三角形ABC邊BC上一點(diǎn), =3 ,En(n∈N*)為AC邊上的一列點(diǎn),滿足 = an+1 ﹣(3an+2) ,其中實(shí)數(shù)列{an}中,an>0,a1=1,則{an}的通項(xiàng)公式為(
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1與圓C2相交于A、B兩點(diǎn),

(1)求公共弦AB所在的直線方程;

(2)求圓心在直線上,且經(jīng)過A、B兩點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(diǎn)(0, ),離心率e=
(Ⅰ)求橢圓C的方程及焦距.
(Ⅱ)橢圓C的左焦點(diǎn)為F1 , 右頂點(diǎn)為A,經(jīng)過點(diǎn)A的直線l與橢圓C的另一交點(diǎn)為P.若點(diǎn)B是直線x=2上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),且直線BF1⊥l,問:直線BP是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長(zhǎng)為1的正方體ABCD﹣A'B'C'D'中,E是AA'的中點(diǎn),P是三角形BDC'內(nèi)的動(dòng)點(diǎn),EP⊥BC',則P的軌跡長(zhǎng)為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案