在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(參數(shù)t∈R),圓C的參數(shù)方程為,(參數(shù)θ∈[0,2π]),則圓C的圓心坐標(biāo)為     ,圓心到直線l的距離為    
【答案】分析:先利用兩式相加消去t將直線的參數(shù)方程化成普通方程,然后利用sin2θ+cos2θ=1將圓的參數(shù)方程化成圓的普通方程,求出圓心和半徑,最后利用點到直線的距離公式求出圓心到直線的距離即可.
解答:解:直線l的參數(shù)方程為(參數(shù)t∈R),
∴直線的普通方程為x+y-6=0
圓C的參數(shù)方程為(參數(shù)θ∈[0,2π]),
∴圓C的普通方程為x2+(y-2)2=4
∴圓C的圓心為(0,2),d=
故答案為:(0,2),
點評:本小題主要考查圓的參數(shù)方程及直線與圓的位置關(guān)系的判斷,以及轉(zhuǎn)化與化歸的思想方法.本題出現(xiàn)最多的問題應(yīng)該是計算上的問題,平時要強化基本功的練習(xí),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標(biāo)是
3
5
,點B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案