分析 命題的逆命題為若f(a)+f(b)≥f(-a)+f(-b),則a+b≥0,根據(jù)正“難”則“反”的原則,我們可以用反證法判定結(jié)論的真假
解答 解:逆命題為:若f(a)+f(b)≥f(-a)+f(-b),則a+b≥0.
此命題的逆命題成立,
證明:設(shè)a+b<0,則a<-b,b<-a,
∵f(x)是R上的增函數(shù),
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),這與題設(shè)f(a)+f(b)≥f(-a)+f(-b)矛盾,
∴f(a)+f(b)≥f(-a)+f(-b),則a+b≥0
點評 本題考查反證法的運用,注意反證法的步驟以及明確指出矛盾即可.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+2i | B. | -4-2i | C. | -2+4i | D. | -2+6i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $8\sqrt{2}$ | B. | 8 | C. | $4\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈R,使tanx≠1 | B. | ¬p:?x∈R,使tanx≠1 | ||
C. | ¬p:?x∉R,使tanx≠1 | D. | ¬p:?x∈R,使tanx≠1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | (2,$\frac{33}{8}$) | C. | (2,$\frac{19}{8}$) | D. | ($\frac{19}{8}$,$\frac{33}{8}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com