5.若函數(shù)f(x)=lg(x2+ax-a-1)在區(qū)間[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是(-3,+∞).

分析 令t=x2+ax-a-1,由外函數(shù)y=lgt為增函數(shù),可知要使復合函數(shù)f(x)=lg(x2+ax-a-1)在區(qū)間[2,+∞)上單調(diào)遞增,則$\left\{\begin{array}{l}{-\frac{a}{2}≤2}\\{{2}^{2}+2a-a-1>0}\end{array}\right.$,求解不等式組得答案.

解答 解:令t=x2+ax-a-1,
外函數(shù)y=lgt為增函數(shù),要使復合函數(shù)f(x)=lg(x2+ax-a-1)在區(qū)間[2,+∞)上單調(diào)遞增,
則$\left\{\begin{array}{l}{-\frac{a}{2}≤2}\\{{2}^{2}+2a-a-1>0}\end{array}\right.$,解得a>-3.
∴實數(shù)a的取值范圍是:(-3,+∞).
故答案為:(-3,+∞).

點評 本題主要考查了復合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對應復合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進行判斷,判斷的依據(jù)是“同增異減”,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.正方體的內(nèi)切球和外接球的表面積之比為( 。
A.1:2B.1:3C.1:4D.2:3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線 C1:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1( a>0,b>0),圓 C2:x2+y2-2ax+$\frac{3}{4}$a2=0,若雙曲線C1 的一條漸近線與圓 C2 有兩個不同的交點,則雙曲線 C1 的離心率的范圍是( 。
A.(1,$\frac{{2\sqrt{3}}}{3}$)B.($\frac{{2\sqrt{3}}}{3}$,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前 n 項和為 Sn,已知a1=1,Sn+1=3Sn+1,n∈N?
(1)求數(shù)列{an}的通項公式;
(2)若 bn=$\frac{8n}{{{a_{n+1}}-{a_n}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某位股民購進某只股票,在接下來的交易時間內(nèi),他的這只股票先經(jīng)歷了5次漲停(每次上漲10%),又經(jīng)歷了5次跌停(每次下跌10%),則該股民這只股票的盈虧情況(不考慮其他費用)為( 。
A.略有盈利B.略有虧損
C.沒有盈利也沒有虧損D.無法判斷盈虧情況

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線m:x=-4,圓M:x2+y2+2x-8=0,P為平面內(nèi)一動點,若點P到圓心M的距離是到直線m距離的一半.
(1)動點P的軌跡是什么曲線?寫出該曲線的標準方程;
(2)設(shè)動點P的軌跡為曲線F,過點E(4,-3)作直線l與曲線F交于C、D兩點,并與直線x-y-1=0相交于點Q,問:$\frac{1}{|EC|}$、$\frac{1}{|EQ|}$、$\frac{1}{|ED|}$是否成等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某中學舉行了一次“環(huán)保知識競賽”,全校學生參加了這次競賽,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計,請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
 組別 分組 頻數(shù) 頻率
 第1組[50,60) 8 0.16
 第2組[60,70) a
 第3組[70,80) 20 0.40
 第4組[80,90)  0.08
 第5組[90,100) 2 b
 合計   
(1)寫出a,b,x,y的值.
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動.
①求所抽取的2名同學中至少有1名同學的成績在[90,100]內(nèi)的概率;
②求所抽取的2名同學來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.集合A={y|y=2x,x∈R},B={x∈Z|log6(x+2)<1},則A∩B=( 。
A.{x|0<x<4}B.{1,2,3}C.{0,1,2,3}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)樣本數(shù)據(jù)x1、x2,…,x2017的方差是4,若yi=xi-1(i=1,2…,2017),則y1,y2,…,y2017的方差為4.

查看答案和解析>>

同步練習冊答案