已知a>b>0,求a2+數(shù)學(xué)公式的最小值.

解:∵b(a-b)≤(2=,
∴a2+≥a2+≥16.
當(dāng)且僅當(dāng),即時(shí)取等號(hào).
分析:先利用基本不等式求得b(a-b)范圍,進(jìn)而代入原式,進(jìn)一步利用基本不等式求得問(wèn)題答案.
點(diǎn)評(píng):本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用.解題的時(shí)候注意等號(hào)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>b>0,求a2+
16b(a-b)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)已知雙曲線(xiàn)C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線(xiàn)的一個(gè)方向向量.
(1)求雙曲線(xiàn)C的方程;
(2)若過(guò)點(diǎn)(-3,0)任意作一條直線(xiàn)與雙曲線(xiàn)C交于A(yíng),B兩點(diǎn) (A,B都不同于點(diǎn)D),求
DA
DB
的值;
(3)對(duì)于雙曲線(xiàn)Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線(xiàn)Γ上的兩點(diǎn)(M,N都不同于點(diǎn)E),且EM⊥EN,求證:直線(xiàn)MN與x軸的交點(diǎn)是一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•梅州一模)已知F1,F(xiàn)2分別是橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點(diǎn),其中F1也是拋物線(xiàn)C1:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知A(b,0),B(0,a),直線(xiàn)y=kx(k>0)與AB相交于點(diǎn)D,與橢圓C1相交于點(diǎn)E,F(xiàn)兩點(diǎn),求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•虹口區(qū)一模)已知函數(shù)f(x)=ax2+bx+c(a,b,c為實(shí)數(shù),a≠0),定義域D:[-1,1]
(1)當(dāng)a=1,b=-1時(shí),若函數(shù)f(x)在定義域內(nèi)恒小于零,求c的取值范圍;
(2)當(dāng)a=1,常數(shù)b<0時(shí),若函數(shù)f(x)在定義域內(nèi)恒不為零,求c的取值范圍;
(3)當(dāng)b>2a>0時(shí),在D上是否存在x,使得|f(x)|>b成立?(要求寫(xiě)出推理過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

已知a>b>0,求a+的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案