【題目】已知圓的圓心軸的正半軸上,半徑為2,且被直線截得的弦長為.

(1)求圓的方程;

(2)設(shè)是直線上的動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,證明:經(jīng)過,三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

【答案】(1) 圓. (2)證明見解析;.

【解析】

1)設(shè)出圓心坐標(biāo),利用點(diǎn)到直線距離公式以及圓的弦長列方程,解方程求得圓心坐標(biāo),進(jìn)而求得圓的方程.2)設(shè)出點(diǎn)坐標(biāo),根據(jù)過圓的切線的幾何性質(zhì),得到過,三點(diǎn)的圓是以為直徑的圓.設(shè)出圓上任意一點(diǎn)的坐標(biāo),利用,結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算進(jìn)行化簡,得到該圓對應(yīng)的方程,根據(jù)方程過的定點(diǎn)與無關(guān)列方程組,解方程組求得該圓所過定點(diǎn).

解:(1)設(shè)圓心

則圓心到直線的距離.

因?yàn)閳A被直線截得的弦長為

.

解得(舍),∴圓.

(2)已知,設(shè)

為切線,∴,∴過,,三點(diǎn)的圓是以為直徑的圓.

設(shè)圓上任一點(diǎn)為,則.

,,∴

.

若過定點(diǎn),即定點(diǎn)與無關(guān)

解得,所以定點(diǎn)為,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(﹣1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正方形ABCD沿對角線BD折成直二面角A﹣BC﹣C,有如下四個(gè)結(jié)論:
①AC⊥BD;②△ABC是等邊三角形;
③AB與CD所成的角90°;④二面角A﹣BC﹣D的平面角正切值是
其中正確結(jié)論是 .(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),的子集,若,則稱為一個(gè)“理想配集”,那么符合此條件的“理想配集”的個(gè)數(shù)是________.(規(guī)定是兩個(gè)不同的“理想配集”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題:

①函數(shù)fx=2a2x-1-1的圖象過定點(diǎn)(,-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),fx=xx+1),若fa=-2則實(shí)數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對于任意xRfx=f4-x)成立,則fx)圖象關(guān)于直線x=2對稱;

⑤對于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=CD=1,BD= ,BD⊥CD.將四邊形ABCD沿對角線BD折成四面體A′﹣BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是(

A.A′C⊥BD
B.∠BA′C=90°
C.CA′與平面A′BD所成的角為30°
D.四面體A′﹣BCD的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)已知橢圓過點(diǎn),且離心率為.

)求橢圓的方程;

為橢圓的左、右頂點(diǎn),直線軸交于點(diǎn),點(diǎn)是橢圓上異于

的動(dòng)點(diǎn),直線分別交直線兩點(diǎn).證明:恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:

命題a=0,ab=0”的否命題是a=0,ab≠0”;

已知命題p:x∈R,x2+x+1<0,p:x∈R,x2+x+1≥0;

若命題p”與命題“pq”都是真命題,則命題q一定是真命題;

命題0<a<1,loga(a+1)<lo.

其中正確命題的序號是_____.(把所有正確的命題序號都填上)

查看答案和解析>>

同步練習(xí)冊答案