【題目】已知圓的圓心在軸的正半軸上,半徑為2,且被直線截得的弦長為.
(1)求圓的方程;
(2)設(shè)是直線上的動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,證明:經(jīng)過,,三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).
【答案】(1) 圓:. (2)證明見解析;,.
【解析】
(1)設(shè)出圓心坐標(biāo),利用點(diǎn)到直線距離公式以及圓的弦長列方程,解方程求得圓心坐標(biāo),進(jìn)而求得圓的方程.(2)設(shè)出點(diǎn)坐標(biāo),根據(jù)過圓的切線的幾何性質(zhì),得到過,,三點(diǎn)的圓是以為直徑的圓.設(shè)出圓上任意一點(diǎn)的坐標(biāo),利用,結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算進(jìn)行化簡,得到該圓對應(yīng)的方程,根據(jù)方程過的定點(diǎn)與無關(guān)列方程組,解方程組求得該圓所過定點(diǎn).
解:(1)設(shè)圓心,
則圓心到直線的距離.
因?yàn)閳A被直線截得的弦長為
∴.
解得或(舍),∴圓:.
(2)已知,設(shè),
∵為切線,∴,∴過,,三點(diǎn)的圓是以為直徑的圓.
設(shè)圓上任一點(diǎn)為,則.
∵,,∴
即.
若過定點(diǎn),即定點(diǎn)與無關(guān)
令
解得或,所以定點(diǎn)為,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(﹣1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A﹣BC﹣C,有如下四個(gè)結(jié)論:
①AC⊥BD;②△ABC是等邊三角形;
③AB與CD所成的角90°;④二面角A﹣BC﹣D的平面角正切值是;
其中正確結(jié)論是 .(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),與是的子集,若,則稱為一個(gè)“理想配集”,那么符合此條件的“理想配集”的個(gè)數(shù)是________.(規(guī)定與是兩個(gè)不同的“理想配集”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)f(x)=2a2x-1-1的圖象過定點(diǎn)(,-1);
②已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(x+1),若f(a)=-2則實(shí)數(shù)a=-1或2.
③若loga>1,則a的取值范圍是(,1);
④若對于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關(guān)于直線x=2對稱;
⑤對于函數(shù)f(x)=lnx,其定義域內(nèi)任意x1≠x2都滿足f()≥
其中所有正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD=1,BD= ,BD⊥CD.將四邊形ABCD沿對角線BD折成四面體A′﹣BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是( )
A.A′C⊥BD
B.∠BA′C=90°
C.CA′與平面A′BD所成的角為30°
D.四面體A′﹣BCD的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知橢圓過點(diǎn),且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)為橢圓的左、右頂點(diǎn),直線與軸交于點(diǎn),點(diǎn)是橢圓上異于
的動(dòng)點(diǎn),直線分別交直線于兩點(diǎn).證明:恒為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
①命題“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
②已知命題p:x∈R,x2+x+1<0,則p:x∈R,x2+x+1≥0;
③若命題“p”與命題“p或q”都是真命題,則命題q一定是真命題;
④命題“若0<a<1,則loga(a+1)<lo.
其中正確命題的序號是_____.(把所有正確的命題序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com