函數(shù)f(x)=2x3-6x2+7在(0,2)內(nèi)零點(diǎn)的個(gè)數(shù)為(  )
分析:求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,再利用零點(diǎn)存在定理,即可得到結(jié)論.
解答:解:求導(dǎo)函數(shù)f′(x)=6x2-12x=6x(x-2)
令f′(x)>0,可得x<0或x>2;令f′(x)<0,可得0<x<2;
∴函數(shù)f(x)=2x3-6x2+7在(0,2)上單調(diào)減
∵f(0)=7>0,f(2)=2×8-6×4+7=-1<0
∴函數(shù)f(x)=2x3-6x2+7在(0,2)內(nèi)有一個(gè)零點(diǎn)
故選B.
點(diǎn)評(píng):本題重點(diǎn)考查函數(shù)的零點(diǎn),考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,確定函數(shù)的單調(diào)性是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3-
1
2
x2+m(m為常數(shù))的圖象上A點(diǎn)處的切線與直線x+y+3=0垂直,則點(diǎn)A的橫坐標(biāo)為(  )
A、
1
2
B、-
1
3
C、
1
2
-
1
3
D、1或
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-2x3+5x2-3x+2,則f(-3)=
110
110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=2x3-6x2+1(x∈[-2,3])的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3+mx2+(1-m)x,(x∈R).
(1)當(dāng)m=1時(shí),解不等式f′(x)>0;
(2)若曲線y=f(x)的所有切線中,切線斜率的最小值為-11,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=2x3+3x2-12x+1的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案