13.拋物線x2=4y上一點(diǎn)P到焦點(diǎn)的距離為3,則點(diǎn)P到y(tǒng)軸的距離為2$\sqrt{2}$.

分析 先根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,進(jìn)而根據(jù)拋物線的定義可知點(diǎn)p到焦點(diǎn)的距離與到準(zhǔn)線的距離相等,進(jìn)而推斷出yp+1=2,求得yp,代入拋物線方程即可求得點(diǎn)p的橫坐標(biāo)即可.

解答 解:根據(jù)拋物線方程可求得焦點(diǎn)坐標(biāo)為(0,1),準(zhǔn)線方程為y=-1,
根據(jù)拋物線定義,
∴yp+1=3,
解得yp=2,代入拋物線方程求得x=±2$\sqrt{2}$,
∴點(diǎn)P到y(tǒng)軸的距離為2$\sqrt{2}$,
故答案為:2$\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查拋物線的定義:拋物線上的點(diǎn)到焦點(diǎn)距離與到準(zhǔn)線距離相等,?捎脕斫鉀Q涉及拋物線焦點(diǎn)的直線或焦點(diǎn)弦的問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,PA=PB,E為PC上的點(diǎn),且BE⊥平面PAC.
(Ⅰ)求證:PA⊥平面PBC
(Ⅱ)求二面角P-AC-B的正弦值;
(Ⅲ)求點(diǎn)D到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等差數(shù)列{an}中,已知a1=3,a4=5,則a7等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列四個(gè)命題:
①由樣本數(shù)據(jù)得到的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$必過樣本點(diǎn)的中心(${\overline x$,$\overline y}$);
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好;
③若線性回歸方程為$\hat y$=3-2.5x,則變量x每增加1個(gè)單位時(shí),y平均減少2.5個(gè)單位;
④在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄,殘差平方和越小.
上述四個(gè)命題中,正確命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.由y=$\frac{1}{x}$,x軸及x=1,x=2圍成的圖形的面積為(  )
A.ln2B.lg2C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)點(diǎn)A(1,-2),B(3,m),C(-1,4),若$\overrightarrow{AC}$•$\overrightarrow{CB}$=4,則實(shí)數(shù)m的值為( 。
A.6B.-5C.4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有一段“三段論”推理是這樣的:對(duì)于定義域內(nèi)可導(dǎo)函數(shù)f(x),如果總有f′(x)<0,那么f(x)在定義域內(nèi)單調(diào)遞減;因?yàn)楹瘮?shù)f(x)=$\frac{1}{x}$滿足在定義域內(nèi)導(dǎo)數(shù)值恒負(fù),所以,f(x)=$\frac{1}{x}$在定義域內(nèi)單調(diào)遞減,以上推理中( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對(duì)具有線性相關(guān)關(guān)系的兩個(gè)變量x,y,觀測(cè)得到一組數(shù)據(jù)如表:
x-8-435
y197-3-9
若y與x的線性回歸方程為的值為$\stackrel{∧}{y}$=-2x+$\stackrel{∧}{a}$,則$\stackrel{∧}{a}$的值為1.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在正方體ABCD-A1B1C1D1中,二面角D1-AB-D的 大小是(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案