設雙曲線
y2
a2
-
x2
3
=1
的兩個焦點分別為F1、F2,離心率為2.
(Ⅰ)求此雙曲線的漸近線l1、l2的方程;
(Ⅱ)若A、B分別為l1、l2上的點,且2|AB|=5|F1F2|,求線段AB的中點M的軌跡方程,并說明軌跡是什么曲線.
分析:(Ⅰ)利用離心率為2,結合c2=a2+3,可求a,c的值,從而可求雙曲線方程,即可求得漸近線方程;
(Ⅱ)設A(x1,y1),B(x2,y2),AB的中點M(x,y),利用2|AB|=5|F1F2|,建立方程,根據(jù)A、B分別為l1、l2上的點,化簡可得軌跡方程及對應的曲線.
解答:解:(Ⅰ)∵e=2,∴c2=4a2
∵c2=a2+3,∴a=1,c=2
∴雙曲線方程為y2-
x2
3
=1
,漸近線方程為y=±
3
3
x

(Ⅱ)設A(x1,y1),B(x2,y2),AB的中點M(x,y)
∵2|AB|=5|F1F2|,∴|AB|=
5
2
|F1F2|=
5
2
×2c=10,∴
(x1-x2)2+(y1-y2)2
=10
y1=
3
3
x1
,y2=-
3
3
x2
,2x=x1+x2,2y=y1+y2
y1+y2=
3
3
(x1-x2)
,y1-y2=
3
3
(x1+x2)

3×(2y)2+
1
3
×(2x)2=100

x2
75
+
3y2
25
=1
,對應的曲線為橢圓.
點評:本題考查軌跡方程的求解,考查雙曲線的幾何性質,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•漳州模擬)設雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)
的漸近線與圓(x-1)2+(y-1)2=
1
5
相切,則該雙曲線的離心率等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•寧波模擬)已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域為R”.則P是Q成立的( 。

查看答案和解析>>

科目:高中數(shù)學 來源:寧波模擬 題型:單選題

已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域為R”.則P是Q成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:漳州模擬 題型:單選題

設雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)
的漸近線與圓(x-1)2+(y-1)2=
1
5
相切,則該雙曲線的離心率等于(  )
A.
5
2
5
B.
5
4
5
3
C.
5
D.
5
3

查看答案和解析>>

同步練習冊答案