【題目】已知函數(shù)的定義域
,部分對(duì)應(yīng)值如表,
的導(dǎo)函數(shù)
的圖象如圖所示,下列關(guān)于函數(shù)
的命題;
①函數(shù)的值域?yàn)?/span>
;
②函數(shù)在
上是減函數(shù);
③如果當(dāng)時(shí),
最大值是
,那么
的最大值為
;
④當(dāng)時(shí),函數(shù)
最多有4個(gè)零點(diǎn).
其中正確命題的序號(hào)是_________.
【答案】①②④
【解析】試題分析:因?yàn)?/span>的導(dǎo)函數(shù)
的圖象如圖所示,觀察函數(shù)圖象可知,在區(qū)間
內(nèi),
,所以函數(shù)
上單調(diào)遞增,在區(qū)間
內(nèi),
,所以函數(shù)
上單調(diào)遞減,所以①②是正確的;兩個(gè)極大值點(diǎn),結(jié)合圖象可知:函數(shù)
在定義域
,在
處極大值
,在
處極大值
,在
處極大值
,又因?yàn)?/span>
,所以
的最大值是
,最小值為
, 當(dāng)
時(shí),
的最大值是
,那么
或
,所以③錯(cuò)誤;求函數(shù)
的零點(diǎn),可得
因?yàn)椴恢钚≈档闹�,結(jié)合圖象可知,當(dāng)
時(shí),函數(shù)
最多有4個(gè)零點(diǎn),所以④正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線
:x=6,圓
與
軸相交于點(diǎn)
(如圖),點(diǎn)P(-1,2)是圓
內(nèi)一點(diǎn),點(diǎn)
為圓
上任一點(diǎn)(異于點(diǎn)
),直線
與
相交于點(diǎn)
.
(1)若過點(diǎn)P的直線與圓
相交所得弦長(zhǎng)等于
,求直線
的方程;
(2)設(shè)直線的斜率分別為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地參加2015 年夏令營(yíng)的名學(xué)生的身體健康情況,將學(xué)生編號(hào)為
,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為
的樣本,且抽到的最小號(hào)碼為
,已知這
名學(xué)生分住在三個(gè)營(yíng)區(qū),從
到
在第一營(yíng)區(qū),從
到
在第二營(yíng)區(qū),從
到
在第三營(yíng)區(qū),則第一、第二、第三營(yíng)區(qū)被抽中的人數(shù)分別為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,
,其前
項(xiàng)和
滿足
,其中
.
(1)設(shè),證明:數(shù)列
是等差數(shù)列;
(2)設(shè),
為數(shù)列
的前
項(xiàng)和,求證:
;
(3)設(shè)(
為非零整數(shù),
),試確定
的值,使得對(duì)任意
,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓
相交于
兩點(diǎn).
(1)若橢圓的離心率為,焦距為
,求線段
的長(zhǎng);
(2)若向量與向量
互相垂直(其中
為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離心率
時(shí),求橢圓長(zhǎng)軸長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
為直角梯形,
平面
,
為
的中點(diǎn),
.
(1)求證:平面
;
(2)設(shè),求點(diǎn)
到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com