若{}是等差數(shù)列,且=45,=39,則的值是(    ) 

A.39                   B.20                   C.19.5                 D.33

 

【答案】

D

【解析】因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052523274538443555/SYS201205252327481656233918_DA.files/image001.png">+,,構(gòu)成等差數(shù)列,所以.選D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于等差數(shù)列{an},有如下一個(gè)真命題:“若{an}是等差數(shù)列,且a1=0,s、t是互不相等的正整數(shù),則(s-1)at-(t-1)as=0”.類(lèi)比此命題,對(duì)于等比數(shù)列{bn},有如下一個(gè)真命題:若{bn}是等比數(shù)列,且b1=
 
,s、t是互不相等的正整數(shù),則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=a(a>0),數(shù)列{bn}滿足bn=anan+1(n∈N*
(Ⅰ)若{an}是等差數(shù)列,且b3=12,求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)若{an}是等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Sn
(Ⅲ)若{bn}是公比為a-1的等比數(shù)列時(shí),{an}能否為等比數(shù)列?若能,求出a的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=a(a>0).?dāng)?shù)列{bn}滿足bn=anan+1(n∈N*).
(1)若{an}是等差數(shù)列,且b3=12,求a的值及{an}的通項(xiàng)公式;
(2)若{an}是等比數(shù)列,求{bn}的前項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}(n∈N*),其前n項(xiàng)和為Sn,給出下列四個(gè)命題:
①若{an}是等差數(shù)列,則三點(diǎn)(10,
S10
10
)
、(100,
S100
100
)
、(110,
S110
110
)
共線;
②若{an}是等差數(shù)列,且a1=-11,a3+a7=-6,則S1、S2、…、Sn這n個(gè)數(shù)中必然存在一個(gè)最大者;
③若{an}是等比數(shù)列,則Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比數(shù)列;
④若Sn+1=a1+qSn(其中常數(shù)a1q≠0),則{an}是等比數(shù)列.
其中正確命題的序號(hào)是
①④
①④
.(將你認(rèn)為的正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn=a1Cn1+a2Cn2+a3Cn3+a4Cn4+…+anCnn,bn=n•2n
(1)若{an}是等差數(shù)列,且首項(xiàng)是(
x
-
2
x
)6
展開(kāi)式的常數(shù)項(xiàng)的
1
60
,公差d為(
x
-
2
x
)6
展開(kāi)式的各項(xiàng)系數(shù)和①求S2,S3,S4,②找出Sn與bn的關(guān)系,并說(shuō)明理由.
(2)若an=
qn-1
q-1
(q≠±1)
,且數(shù)列{cn}滿足c1+c2+c3+…+cn=
Sn
2n
,求證:{cn}是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案