如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為,若不過點A的動直線l與橢圓C相交于P,Q兩點,且·=0.

(1)求橢圓C的方程.
(2)求證:直線l過定點,并求出該定點N的坐標.

(1) +y2=1   (2)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,直線是直線上的線段,且是橢圓上一點,求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點在橢圓:上,以為圓心的圓與軸相切于橢圓的右焦點,且,其中為坐標原點.
(1)求橢圓的方程;
(2)已知點,設是橢圓上的一點,過、兩點的直線軸于點,若, 求直線的方程;
(3)作直線與橢圓:交于不同的兩點,,其中點的坐標為,若點是線段垂直平分線上一點,且滿足,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在直角坐標系xOy中,點P到拋物線C:y2=2px(p>0)的準線的距離為.點M(t,1)是C上的定點,A,B是C上的兩動點,且線段AB被直線OM平分.

(1)求p,t的值;
(2)求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上且過點P,離心率是.
(1)求橢圓C的標準方程;
(2)直線l過點E (-1,0)且與橢圓C交于A,B兩點,若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.

(1)求實數(shù)b的值.
(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

P(x0,y0)(x0≠±a)是雙曲線E:-=1(a>0,b>0)上一點,M,N分別是雙曲線E的左,右頂點,直線PM,PN的斜率之積為.
(1)求雙曲線的離心率.
(2)過雙曲線E的右焦點且斜率為1的直線交雙曲線于A,B兩點,O為坐標原點,C為雙曲線上一點,滿足+,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓C:=1(a>b>0)過點(0,4),離心率為.
(1)求C的方程;
(2)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.

查看答案和解析>>

同步練習冊答案