已知0<x<
1
2
,函數(shù)y=x(1-2x)的最大值是
1
8
1
8
分析:由基本不等式ab≤(
a+b
2
2,得2x(1-2x)≤[
2x+(1-2x)
2
]2=
1
4
,由此即可求出函數(shù)y=x(1-2x)的最大值.
解答:解:∵0<x<
1
2
,
∴x(1-2x)=
1
2
•2x(1-2x)≤
1
2
•[
2x+(1-2x)
2
]2=
1
8

當(dāng)且僅當(dāng)2x=1-2x時(shí),即x=
1
4
時(shí)等號(hào)成立
因此,函數(shù)y=x(1-2x)的最大值為f(
1
4
)=
1
8

故答案為:
1
8
點(diǎn)評(píng):本題給出二次函數(shù),求它在(0,
1
2
)上的最大值.著重考查了基本不等式、二次函數(shù)的圖象與性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga[(
1
a
-2)x+1]
在區(qū)間上[1,3]的函數(shù)值大于0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、(
1
2
,1)
B、(
1
2
,
3
5
)
C、(1,+∞)
D、(0,
3
5
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城一模)已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0,
π
4
]
上的函數(shù)值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=[x]的函數(shù)值表示不超過(guò)x的最大整數(shù),如[1.6]=1,[2]=2,已知0≤x<4.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)記函數(shù)g(x)=x-f(x),在給出的坐標(biāo)系中作出函數(shù)g(x)的圖象;
(Ⅲ)若方程g(x)-loga(x-
12
)=0(a>0且a≠1)有且僅有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題1:已知函數(shù)f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我們?nèi)舭衙恳粋(gè)函數(shù)值計(jì)算出,再求和,對(duì)函數(shù)值個(gè)數(shù)較少時(shí)是常用方法,但函數(shù)值個(gè)數(shù)較多時(shí),運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
、f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規(guī)律從而很方便求和,請(qǐng)求出上述結(jié)果,并用此方法求解下面問(wèn)題:
問(wèn)題2:已知函數(shù)f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案