【題目】一個(gè)袋子內(nèi)裝有2個(gè)綠球,3個(gè)黃球和若干個(gè)紅球(所有球除顏色外其他均相同),從中一次性任取2個(gè)球,每取得1個(gè)綠球得5分,每取得1個(gè)黃球得2分,每取得1個(gè)紅球得1分,用隨機(jī)變量表示2個(gè)球的總得分,已知得2分的概率為.
(Ⅰ)求袋子內(nèi)紅球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ)4個(gè);(Ⅱ)見解析.
【解析】試題分析:
(1)利用題意得到關(guān)于實(shí)數(shù)n的值,解方程即可求得n=4,即袋子內(nèi)共有4個(gè)紅球;
(2) 隨機(jī)變量X的所有可能取值為2,3,4,6,7,10.據(jù)此寫出分布列,解得數(shù)學(xué)期望為.
試題解析:
(Ⅰ)設(shè)袋子內(nèi)紅球的個(gè)數(shù)為,
由題設(shè)條件可知,當(dāng)取得2個(gè)紅球時(shí)得2分,
其概率為,
化簡得: ,解得或(不合題意,舍去)
∴袋子內(nèi)共有4個(gè)紅球.
(Ⅱ)隨機(jī)變量X的所有可能取值為2,3,4,6,7,10.
∵, ,
, ,
, ,
∴隨機(jī)變量的分布列為:
2 | 3 | 4 | 6 | 7 | 10 | |
∴=2×+3×+4×+6×+7×+10×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長軸長為,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)經(jīng)過原點(diǎn)作直線(不與坐標(biāo)軸重合)交橢圓于, 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , , 三點(diǎn)共線..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(Ⅰ)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(Ⅱ)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )= .
(Ⅰ)求f(x)的解析式,
(Ⅱ)用函數(shù)單調(diào)性的定義證明f(x)在(﹣1,1)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,使2x>3x;命題q:x(0, ),tanx>sinx下列是真命題的是( )
A.(¬p)∧q
B.(¬p)∨(¬q)
C.p∧(¬q)
D.p∨(¬q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程: (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,且取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= .
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)設(shè)曲線C與直線l交于A,B兩點(diǎn),若P(1,2),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,現(xiàn)有一迷失方向的小青蛙在3處,它每跳動(dòng)一次可以等可能地進(jìn)入相鄰的任意一格(若它在5處,跳動(dòng)一次,只能進(jìn)入3處,若在3處,則跳動(dòng)一次可以等機(jī)會(huì)進(jìn)入1,2,4,5處),則它在第三次跳動(dòng)后,首次進(jìn)入5處的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+mx+n有兩個(gè)零點(diǎn)﹣1與3.
(1)求出函數(shù)f(x)的解析式,并指出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若g(x)=f(|x|)在x1 , x2∈[t,t+1]是增函數(shù),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(1)當(dāng)a=b=2時(shí),證明:函數(shù)f(x)不是奇函數(shù);
(2)設(shè)函數(shù)f(x)是奇函數(shù),求a與b的值;
(3)在(2)條件下,判斷并證明函數(shù)f(x)的單調(diào)性,并求不等式 的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com