如圖,現(xiàn)要在邊長為的正方形內(nèi)建一個交通“環(huán)島”.正方形的四個頂點為圓心在四個角分別建半徑為(不小于)的扇形花壇,以正方形的中心為圓心建一個半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.
(1)求的取值范圍;(運算中取)
(2)若中間草地的造價為元,四個花壇的造價為元,其余區(qū)域的造價為元,當(dāng)取何值時,可使“環(huán)島”的整體造價最低?
(1) ,(2) .
【解析】
試題分析:(1)解決應(yīng)用題問題首先要解決閱讀問題,具體說就是要會用數(shù)學(xué)式子正確表示數(shù)量關(guān)系,本題根據(jù)半徑、島口寬、路寬限制條件列方程組,即可得的取值范圍;其難點在路寬最小值的確定,觀察圖形易知路寬最小值應(yīng)在正方形對角線連線上取得,(2)本題解題思路清晰,就是根據(jù)草地、花壇、其余區(qū)域的造價列函數(shù)關(guān)系式,再由導(dǎo)數(shù)求最值.難點在所列函數(shù)解析式是四次,其導(dǎo)數(shù)為三次,在判定區(qū)間導(dǎo)數(shù)符號時需細(xì)心確定,要解決這一難點,需充分利用因式分解簡化式子結(jié)構(gòu).
試題解析:(1)由題意得, 4分
解得即. 7分
(2)記“環(huán)島”的整體造價為元,則由題意得
, 10分
令,則,
由,解得或, 12分
列表如下:
9 | (9,10) | 10 | (10,15) | 15 | |
| - | 0 | + | 0 | |
| ↘ | 極小值 | ↗ |
|
所以當(dāng),取最小值.
答:當(dāng)時,可使“環(huán)島”的整體造價最低. 14分
考點:利用導(dǎo)數(shù)求最值,解不等式.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇南京市、鹽城市高三第一次模擬考試文數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,現(xiàn)要在邊長為的正方形內(nèi)建一個交通“環(huán)島”.正方形的四個頂點為圓心在四個角分別建半徑為(不小于)的扇形花壇,以正方形的中心為圓心建一個半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.
(1)求的取值范圍;(運算中取)
(2)若中間草地的造價為元,四個花壇的造價為元,其余區(qū)域的造價為元,當(dāng)取何值時,可使“環(huán)島”的整體造價最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省三明市畢業(yè)班5月質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:解答題
某企業(yè)有兩個生產(chǎn)車間,分別位于邊長是的等邊三角形的頂點處(如圖),現(xiàn)要在邊上的點建一倉庫,某工人每天用叉車將生產(chǎn)原料從倉庫運往車間,同時將成品運回倉庫.已知叉車每天要往返車間5次,往返車間20次,設(shè)叉車每天往返的總路程為.(注:往返一次即先從倉庫到車間再由車間返回倉庫)
(Ⅰ)按下列要求確定函數(shù)關(guān)系式:
①設(shè)長為,將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請你選用(Ⅰ)中一個合適的函數(shù)關(guān)系式,求總路程 的最小值,并指出點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省太原五中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com