精英家教網(wǎng)如圖,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點D,切線DE⊥AC,垂足為點E.則
AECE
=
 
分析:先判斷△ABC是等邊三角形.在直角△ADE中,∠A=60°,可得AD=2AE,在直角△ADC中,∠A=60°,可得AC=2AD,從而AC=4AE,故可得結(jié)論.
解答:解:連接OD,CD
∵DE是圓的切線,精英家教網(wǎng)∴OD⊥DE,
又∵DE⊥AC,∴OD∥AC;
∵AB=AC,∴BD=OD;
又∵OD=OB,∴OB=OD=BD,
∴△BDO是等邊三角形,∴∠B=60°,
∵AB=AC,∴△ABC是等邊三角形.
在直角△ADE中,∠A=60°,∴AD=2AE,
在直角△ADC中,∠A=60°,∴AC=2AD,
∴AC=4AE
AE
CE
=
1
3

故答案為:
1
3
點評:本題考查圓的切線,考查比例線段,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點,且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
,
AC
=b
,AP的中點為Q,BQ的中點為R,CR的中點恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點,AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=(  )

查看答案和解析>>

同步練習(xí)冊答案