已知函數(shù)
(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線的斜率為0,且
①若a1≥3,求證:an≥n+2;
②若a1=4,試比較的大小,并說明你的理由.
解(1)∵f(1)=a﹣b=0,∴a=b,
,∴f′(x)=a+
要使函數(shù)f(x)在定義域(0,+∞)內(nèi)為單調(diào)函數(shù),
則在(0,+∞)內(nèi)f′(x)恒大于0或恒小于0,
當a=0時,f′(x)=﹣<0在(0,+∞)內(nèi)恒成立;
當a>0時,要使f′(x)=a()2+a﹣>0恒成立,
則a﹣>0,解得a>1,
當a<0時,要使f′(x)=a()2+a﹣><0恒成立,
則a﹣<0,解得a<﹣1,
所以a的取值范圍為a>1或a<﹣1或a=0.
(2)①∵函數(shù)f(x)的圖象在x=1處的切線的斜率為0,
∴f′(1)=0,即a+a﹣2=0,解得 a=1
∴f′(x)=(﹣1)2,an+1=an2﹣nan+1
下面用數(shù)學歸納法證明:
(Ⅰ)當n=1,a1≥3=1+2,不等式成立;
(Ⅱ)假設(shè)當n=k時,不等式成立,
即:ak≥k+2,∴ak﹣k≥2>0,
∴ak+1=ak(ak﹣k )+1≥2(k+2)+1=( k+3)+k+2>k+3
也就是說,當n=k+1時,ak+1≥(k+1)+2成立
根據(jù)(Ⅰ)(Ⅱ)對于所有n≥1,都有an≥n+2成立
②由①得an=an﹣1(an﹣1﹣2n+2)+1≥an﹣1[2(n﹣1)+2﹣2n+2]+1=2an﹣1+1,
于是an+1≥2(an﹣1+1)(n≥2),
所以a2+1≥2(a1+1),a3+1≥2(a2+1)…,an+1≥2(an﹣1+1)
累乘得:an+1≤2n﹣1(a1+1),則 (n≥2),
所以 (1++…+ )= (1﹣ )<
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年山東省青島市高三3月統(tǒng)一質(zhì)量檢測考試(第二套)理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省高三上學期10月月考文科數(shù)學卷 題型:選擇題

已知函數(shù)的定義域為,部分函數(shù)值如表所示,其導函數(shù)的圖象如圖所示,若正數(shù)滿足,則的取值范圍是(  )

-3

0

6

1

1

 

 

 

 

 

A.            B.           C.    D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖南省高一12月月考數(shù)學 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù),

(1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖南省高一12月月考數(shù)學 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù),

(1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分

)已知函數(shù)                                       ,(>0),若函

    數(shù)的最小正周期為

(1)求的值,并求函數(shù)的最大值;

(2)若0<x<,當f(x)=時,求的值.

查看答案和解析>>

同步練習冊答案