已知定點和定直線,動點與定點的距離等于點到定直線的距離,記動點的軌跡為曲線.
(1)求曲線的方程.
(2)若以為圓心的圓與曲線交于、不同兩點,且線段是此圓的直徑時,求直線的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的離心率為,右焦點到直線的距離為.
(1)求橢圓的方程;
(2)過橢圓右焦點F2斜率為()的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的一個焦點與拋物線的焦點重合,且截拋物線的準線所得弦長為,傾斜角為的直線過點.
(1)求該橢圓的方程;
(2)設橢圓的另一個焦點為,問拋物線上是否存在一點,使得與關(guān)于直線對稱,若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,已知對于任意實數(shù)k,直線(k+1)x+(k-)y-(3k+)=0恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知一條曲線在軸右側(cè),上每一點到點的距離減去它到軸距離的差都是1.
(1)求曲線的方程;
(2)設直線交曲線于兩點,線段的中點為,求直線的一般式方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓=1上任一點P,由點P向x軸作垂線PQ,垂足為Q,設點M在PQ上,且=2,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于x軸的直線上一動點,且滿足=+ (O為原點),且四邊形OANB為矩形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓C:=1(a>b>0)的離心率e=,右焦點到直線=1的距離d=,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com