8.若將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,則平移后的圖象的對(duì)稱軸為( 。
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

分析 利用函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的圖象的變換及正弦函數(shù)的對(duì)稱性可得答案.

解答 解:將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,得到y(tǒng)=2sin2(x+$\frac{π}{12}$)=2sin(2x+$\frac{π}{6}$),
由2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$(k∈Z)得:x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z),
即平移后的圖象的對(duì)稱軸方程為x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z),
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的圖象的變換規(guī)律的應(yīng)用及正弦函數(shù)的對(duì)稱性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)$\frac{1+2i}{2-i}$=( 。
A.iB.1+iC.-iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.定義在區(qū)間[0,3π]上的函數(shù)y=sin2x的圖象與y=cosx的圖象的交點(diǎn)個(gè)數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|-|2x-3|.
(Ⅰ)在圖中畫出y=f(x)的圖象;
(Ⅱ)求不等式|f(x)|>1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若cosA=$\frac{4}{5}$,cosC=$\frac{5}{13}$,a=1,則b=$\frac{21}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25.
(Ⅰ)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(Ⅱ)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),l與C交與A,B兩點(diǎn),|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知x,y∈R,且x>y>0,則(  )
A.$\frac{1}{x}$-$\frac{1}{y}$>0B.sinx-siny>0C.($\frac{1}{2}$)x-($\frac{1}{2}$)y<0D.lnx+lny>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p>0)于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為N,連結(jié)ON并延長(zhǎng)交C于點(diǎn)H.
(Ⅰ)求$\frac{{|{OH}|}}{{|{ON}|}}$;
(Ⅱ)除H以外,直線MH與C是否有其它公共點(diǎn)?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案