精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)=(x﹣2)(ax+b)為偶函數,且在(0,+∞)單調遞增,則f(2﹣x)>0的解集為(
A.{x|x>2或x<﹣2}
B.{x|﹣2<x<2}
C.{x|x<0或x>4}
D.{x|0<x<4}

【答案】C
【解析】解:∵函數f(x)=(x﹣2)(ax+b)=ax2+(b﹣2a)x﹣2b為偶函數,

∴二次函數f(x)的對稱軸為y軸,

∴﹣ =0,且a≠0,

即 b=2a,∴f(x)=ax2﹣4a.

再根據函數在(0,+∞)單調遞增,可得a>0.

令f(x)=0,求得 x=2,或x=﹣2,

故由f(2﹣x)>0,可得 2﹣x>2,或2﹣x<﹣2,解得 x<0,或x>4,

故f(2﹣x)>0的解集為 {x|x<0或x>4},

故選:C.

【考點精析】本題主要考查了奇偶性與單調性的綜合的相關知識點,需要掌握奇函數在關于原點對稱的區(qū)間上有相同的單調性;偶函數在關于原點對稱的區(qū)間上有相反的單調性才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 點(n,Sn+3)(n∈N*)在函數y=3×2x的圖象上,等比數列{bn}滿足bn+bn+1=an(n∈N*).其前n項和為Tn , 則下列結論正確的是(
A.Sn=2Tn
B.Tn=2bn+1
C.Tn>an
D.Tn<bn+1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (x>0),m∈R.
(1)若函數f(x)有零點,求實數m的取值范圍;
(2)若函數f(x)的圖象在點(1,f(x))處的切線的斜率為 ,且函數f(x)的最大值為M,求證:1<M<

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】祖暅(公元前5~6世紀)是我國齊梁時代的數學家,是祖沖之的兒子.他提出了一條原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.設由橢圓 =1(a>b>0)所圍成的平面圖形繞y軸旋轉一周后,得一橄欖狀的幾何體(如圖)(稱為橢球體),課本中介紹了應用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12)

如圖,在四棱錐PABCD中,底面ABCD是矩形,PA平面ABCD,AP=AB,BP=BC=2,E,F分別是PB,PC的中點.

()證明:EF平面PAD;

()求三棱錐EABC的體積V.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sinxcosx﹣cos2x﹣
(Ⅰ)求函數f(x)的對稱軸方程;
(Ⅱ)將函數f(x)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移 個單位,得到函數g(x)的圖象.若a,b,c分別是△ABC三個內角A,B,C的對邊,a=2,c=4,且g(B)=0,求b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數據不清楚,那么8位員工月工資的中位數不可能是(
A.5800
B.6000
C.6200
D.6400

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+ax﹣lnx(a∈R,a為常數)
(1)當a=﹣1時,若方程f(x)= 有實根,求b的最小值;
(2)設F(x)=f(x)ex , 若F(x)在區(qū)間(0,1]上是單調函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為R,f(﹣2)=2021,對任意x∈(﹣∞,+∞),都有f'(x)<2x成立,則不等式f(x)>x2+2017的解集為(
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)

查看答案和解析>>

同步練習冊答案