已知 ().
(1)當(dāng)時,判斷在定義域上的單調(diào)性;
(2)若在上的最小值為,求的值;
(3)若在上恒成立,試求的取值范圍.
(1)單調(diào)遞增 (2) (3)
【解析】
試題分析:(1)判斷函數(shù)的單調(diào)性常用作差比較法、導(dǎo)函數(shù)法.其共同點都是與0比大小確定單調(diào)性.也可以利用基本初等函數(shù)的單調(diào)性來判斷:當(dāng)時,因為與在上都是單調(diào)遞增,所以 ()在定義域上單調(diào)遞增;(2)利用導(dǎo)函數(shù)法求閉區(qū)間上的最值,首先要求出極值,然后再與兩個端點函數(shù)值比較得出最值;既要靈活利用單調(diào)性,又要注意對字母系數(shù)進行討論;(3)解決“恒成立”問題,常用分離參數(shù)法,轉(zhuǎn)化為求新構(gòu)造函數(shù)的最值(或值域).
試題解析:(1)由題意得,且 1分
顯然,當(dāng)時,恒成立,在定義域上單調(diào)遞增; 3分
(2)當(dāng)時由(1)得在定義域上單調(diào)遞增,所以在上的最小值為,
即(與矛盾,舍); 5分
當(dāng),顯然在上單調(diào)遞增,最小值為0,不合題意; 6分
當(dāng),,
若(舍);
若(滿足題意);
(舍); 9分
綜上所述. 10分
(3)若在上恒成立,即在上恒成立,(分離參數(shù)求解)
等價于在恒成立,
令. 則; 11分
令,則
顯然當(dāng)時,在上單調(diào)遞減,,
即恒成立,說明在單調(diào)遞減,; 13分
所以. 14分
考點:1.函數(shù)的單調(diào)性 2.導(dǎo)數(shù)及其應(yīng)用
科目:高中數(shù)學(xué) 來源: 題型:
9 |
4 |
1 |
2 |
27 |
8 |
2 |
3 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
k1 |
k2 |
y2 |
2 |
y2 |
2 |
1 |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com