(2012•天津模擬)如圖是一個(gè)組合幾何體的三視圖,則該幾何體的體積是
36+128π
36+128π
分析:由三視圖可知該幾何體為上部是一平放的直三棱柱,下部為圓柱體的組合體.分別求得體積再相加.
解答:解:由三視圖可知該幾何體為上部是一平放的直三棱柱,下部為圓柱體的組合體.
上部一平放的直三棱柱形狀如圖,底面三角形一邊為3,對(duì)應(yīng)的高為4.直三棱柱高為4
其體積V1=S1h1=
1
2
×3×4×6
=36
下部圓柱體的體積V2=S2h2=π×(
8
2
)
2
×8=128π
所以V=V1+V2=36+128π
故答案為:36+128π
點(diǎn)評(píng):本題考查三視圖求幾何體的體積,考查計(jì)算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津模擬)設(shè)y=f(x)在(-∞,1]上有定義,對(duì)于給定的實(shí)數(shù)K,定義fk(x)=
f(x),f(x)≤K
K,f(x)>K
,給出函數(shù)f(x)=2x+1-4x,若對(duì)于任意x∈(-∞,1],恒有fk(x)=f(x),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津模擬)已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:①f(x)=ax-g(x)(a>0,且a≠1);②g(x)≠0;③f(x)•g′(x)>f′(x)•g(x).若
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津模擬)已知集合M={x|log2x≤1},N={x|x2-2x≤0},則“a∈M”是“a∈N”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津模擬)已知等差數(shù)列{an},a1=2,a3=6,若將a1,a4,a5都加上同一個(gè)數(shù),所得的三個(gè)數(shù)依次成等比數(shù)列,則所加的這個(gè)數(shù)為
-11
-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津模擬)如圖所示,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,PA⊥CD,PA=1,PD=
2
,E為PD上一點(diǎn),PE=2ED.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角D-AC-E的余弦值;
(Ⅲ)在側(cè)棱PC上是否存在一點(diǎn)F,使得BF∥平面AEC?若存在,指出F點(diǎn)的位置,并證明;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案