橢圓
x2
25
+
y2
16
=1
的焦距是( 。
分析:
x2
25
+
y2
16
=1
中,由a2=25,b2=16,知c=
25-16
=3,由此能求出
x2
25
+
y2
16
=1
的焦距.
解答:解:
x2
25
+
y2
16
=1
中,
∵a2=25,b2=16,
∴c=
25-16
=3,
x2
25
+
y2
16
=1
的焦距2c=6.
故選B.
點(diǎn)評(píng):本題考查橢圓的焦距的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
25
+
y2
16
=1
的離心率為(  )
A、
3
5
B、
4
5
C、
3
4
D、
16
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為橢圓
x2
25
+
y2
16
=1
上的一點(diǎn),M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點(diǎn),則|PM|+|PN|的最小值為( 。
A、5B、7C、13D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•武漢模擬)若AB過橢圓 
x2
25
+
y2
16
=1 中心的弦,F(xiàn)1為橢圓的焦點(diǎn),則△F1AB面積的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若 P為橢圓
x2
25
+
y2
16
=1
上任意一點(diǎn),F(xiàn)1、F2為左、右焦點(diǎn),如圖所示.
(1)若PF1的中點(diǎn)為M,求證:|MO|=5-
1
2
|PF1|

(2)若F1PF2=600,求|PF1|•|PF2|之值;
(3)橢圓上是否存在點(diǎn)P,使
PF1
PF2
=0
,若存在,求出P點(diǎn)的坐標(biāo),若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知三角形ABC頂點(diǎn)A(-3,0)和C(3,0),頂點(diǎn)B在橢圓
x2
25
+
y2
16
=1上,則
sinA+sinC
sinB
=
 

查看答案和解析>>

同步練習(xí)冊答案