精英家教網 > 高中數學 > 題目詳情
設i是虛數單位,復數
i
1+2i
=
 
考點:復數代數形式的乘除運算
專題:數系的擴充和復數
分析:直接利用復數代數形式的除法運算化簡求值.
解答: 解:
i
1+2i
=
i(1-2i)
(1+2i)(1-2i)
=
2+i
5
=
2
5
+
1
5
i

故答案為:
2
5
+
1
5
i
點評:本題考查了復數代數形式的除法運算,復數的除法,采用分子分母同時乘以分母的共軛復數,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)已知△ABC的頂點A(0,-1),B(0,1),直線AC,直線BC的斜率之積等于m(m0),求頂點C的軌跡方程,并判斷軌跡為何種圓錐曲線.
(2)已知圓M的方程為:(x+1)2+y2=(2a)2(a>0,且a1),定點N(1,0),動點P在圓M上運動,線段PN的垂直平分線與直線MP相交于點Q,求點Q軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0),過點C(
3
,
1
2
)且離心率為
3
2

(1)求橢圓E的方程;
(2)設A,B,M是橢圓E上三點,且滿足
OM
=
3
5
OA
+
4
5
OB
,點P是線段的中點,試問:點P是否在橢圓G:
x2
2
+2y2=1上?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖是計算
10
k=1
1
2k-1
的值的一個流程圖,則常數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

執(zhí)行如圖的程序框圖,若輸出S=7,則輸入k(k∈N*)的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z1=-2+i,z2=a+2i(i為虛數單位,a∈R).若z1z2為實數,則a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線y=-bx2+3的對稱軸是
 
,頂點是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的左右焦點分別為F1F2,|F1F2|=2,P是雙曲線右支上的一點,PF1⊥PF2,F2P與y軸交于點A,△APF1的內切圓半徑為
2
2
,則雙曲線的離心率是(  )
A、
5
2
B、
2
C、
3
D、2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線y=x2-2mx+m+2的頂點在第三象限,試確定m的取值范圍是( 。
A、m<-1或m>2
B、m<0或m>-1
C、-1<m<0
D、m<-1

查看答案和解析>>

同步練習冊答案