曲線y=x3-x在點(diǎn)(1,0)處的切線與直線x+ay=1垂直,則實(shí)數(shù)a的值為( 。
A.2B.-2C.
1
2
D.-
1
2
由題意可得:y′=3x2-1,
故曲線y=x3-x在點(diǎn)(1,0)處的切線斜率k=y′|x=1=2,
又因?yàn)樵撉芯與直線x+ay=1垂直,故有2×(-
1
a
)
=-1,
解得a=2.
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3+x-16.求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)f(x)=ax3+bx2+cx的圖象如圖所示,且f(x)在x=x0與x=-1處取得極值,給出下列判斷:
①f(1)+f(-1)=0;②f(-2)>0;③函數(shù)y=f'(x)在區(qū)間(-∞,0)上是增函數(shù).其中正確的判斷是______.(寫出所有正確判斷的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線y=x-
1
x
在點(diǎn)(1,0)處的切線方程為( 。
A.y=2x-2B.y=x-1C.y=0D.y=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知
lim
n→∞
2n2
2+n
-an)=b,則常數(shù)a、b的值分別為( 。
A.a(chǎn)=2,b=-4B.a(chǎn)=-2,b=4C.a(chǎn)=
1
2
,b=-4
D.a(chǎn)=-
1
2
,b=
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三次函數(shù)f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b為實(shí)常數(shù).
(1)若a=3,b=3時(shí),求函數(shù)f(x)的極大、極小值;
(2)設(shè)函數(shù)g(x)=f′(x)+7,其中f′(x)是f(x)的導(dǎo)函數(shù),若g(x)的導(dǎo)函數(shù)為g′(x),g′(0)>0,g(x)與x軸有且僅有一個(gè)公共點(diǎn),求
g(1)
g′(0)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=lnx+a(x2-x)
(1)若a=-1,求證f(x)有且僅有一個(gè)零點(diǎn);
(2)若對(duì)于x∈[1,2],函數(shù)f(x)圖象上任意一點(diǎn)處的切線的傾斜角都不大于
π
4
,求實(shí)數(shù)a的取值范圍;
(3)若f(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當(dāng)a=1時(shí),過(guò)原點(diǎn)的直線與函數(shù)f(x)的圖象相切于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)0<a<
1
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
3
時(shí),設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對(duì)于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.(e是自然對(duì)數(shù)的底,e<
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)y=f(x)是R上的可導(dǎo)函數(shù),當(dāng)x≠0時(shí),有f′(x)+
f(x)
x
>0
,則函數(shù)F(x)=xf(x)+
1
x
的零點(diǎn)個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案