對于函數(shù)f(x)=sin(ωx+)(ω>0,-<<),有下列論斷:
①函數(shù)y=f(x)的圖象關(guān)于直線x=對稱;
②函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(,0)對稱;
③函數(shù)y=f(x)的最小正周期為π;
④函數(shù)y=f(x)在區(qū)間[-,0]上是單調(diào)增函數(shù).
以其中兩個論斷作為條件,其余兩個作為結(jié)論,寫出你認(rèn)為正確一個命題:
________.(填序號即可,形式:)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:北京市東城區(qū)2004年高三年級綜合練習(xí)(一)·高三數(shù)學(xué)(文史類) 題型:044
為合理用電緩解電力緊張,某市將試行“峰谷電價”計費(fèi)方法,在高峰用電時段,即居民戶每日8時至22時,電價每千瓦時為0.56元,其余時段電價每千瓦時為0.28元.而目前沒有實(shí)行“峰谷電價”的居民戶電價為每千瓦時0.53元.若總用電量為S千瓦時,設(shè)高峰時段用電量為x千瓦時.
(Ⅰ)寫出實(shí)行峰谷電價的電費(fèi)y1=g1(x)及現(xiàn)行電價的電費(fèi)y2=g2(s)的函數(shù)解析式及電費(fèi)總差額f(x)=y(tǒng)2-y1的解析式;
(Ⅱ)對于用電量按時均等的電器(在任何相同的時間內(nèi),用電量相同),采用峰谷電價的計費(fèi)方法后是否能省錢?
(Ⅲ)你認(rèn)為每家每戶是否都適合“峰谷電價”的計費(fèi)方法?(只回答是或不是)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:華南師大附中2007-2008學(xué)年度高三綜合測試、數(shù)學(xué)理科 題型:022
已知集合M是滿足下列條件的函數(shù)f(x)的全體;
①當(dāng)x∈[0,+∞)時,函數(shù)值為非負(fù)實(shí)數(shù);
②對于任意的s、t∈[0,+∞),都有f(s)+f(t)≤f(s+t)
在三個函數(shù)f1(x)=x,f2(x)=2x-1,f3(x)=ln(x+1)中,屬于集合M的是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:華南師大附中2007-2008學(xué)年度高三綜合測試(1)數(shù)學(xué)文科 題型:022
已知集合M是滿足下列條件的函數(shù)f(x)的全體;
①當(dāng)x∈[0,+∞)時,函數(shù)值為非負(fù)實(shí)數(shù);
②對于任意的s、t∈[0,+∞),都有f(s)+f(t)≤f(s+t)
在三個函數(shù)f1(x)=x,f2(x)=2x-1,f3(x)=ln(x+1)中,屬于集合M的是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南省株洲市二中2013屆高三第七次月考數(shù)學(xué)(理)試題 題型:044
已知函數(shù)f(x)=x2-alnx在(1,2]是增函數(shù),g(x)=x-a(0,1)為減函數(shù).
(1)求a的值;
(2)設(shè)函數(shù)φ(x)=2bx-是區(qū)間(0,1}上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f( s)≥φ(t)恒成立,求實(shí)數(shù)b的取值范圍;
(3)設(shè)h(x)=(x)-g(x)-2+,求證:[h(x)]n+2≥h(xn)+2n(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=tx2+2t2x+t-1(t∈R,t>0).
(1)求f(x)的最小值s(t);
(2)若s(t)<-2t+m對于t∈(0,2)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com