考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由n≥2時(shí),a
n=
a
n-1+
,兩邊同乘以3
n-1得,3
n-1a
n=3
n-1a
n-1+2,即b
n-b
n-1=2(n≥2),即得結(jié)論;
(Ⅱ)由(Ⅰ)得a
n=
,利用錯(cuò)位相減法求數(shù)列的和即可.
解答:
解:(Ⅰ)當(dāng)n=1時(shí),b
1=3
0×a
1=2,
當(dāng)n≥2時(shí),a
n=
a
n-1+
,兩邊同乘以3
n-1得,
3
n-1a
n=3
n-1a
n-1+2,即b
n-b
n-1=2(n≥2),
∴數(shù)列:{b
n}是以2為首項(xiàng),2為公差的等差數(shù)列,
∴b
n=2+(n-1)×2=2n.
(Ⅱ)由(Ⅰ)得,b
n=3
n-1a
n=2n,∴a
n=
,
∴S
n=2×
+4×
+…+2(n-1)
+2n×
,①
①×
得,
S
n=2×
+4×
+…+2(n-1)
+2n×
,②
①-②得
S
n=2×
+2×
+…+2×
-2n×
=2×
-2n×
=3-
,
∴S
n=
-
.
點(diǎn)評:本題主要考查等差數(shù)列的判斷方法及數(shù)列求和的方法錯(cuò)位相減法,考查學(xué)生的運(yùn)算能力,屬難題.